Multiplicative-sum Zagreb index of splice, bridge, and bridge-cycle graphs
Resumo
The multiplicative-sum Zagreb index is a graph invariant defined as the product of the sums of the degrees of pairs of adjacent vertices in a graph. In this paper, we compute the multiplicative-sum Zagreb index of some composite graphs such as splice graphs, bridge graphs, and bridge-cycle graphs in terms of the multiplicative-sum Zagreb indices of their components. Then, we apply our results to compute the multiplicative-sum Zagreb index for several classes of chemical graphs and nanostructures.
Downloads
Referências
Azari M., Sharp lower bounds on the Narumi-Katayama index of graph operations, Appl. Math. Comput. 239, 409-421, (2014).
Azari M., A note on vertex-edge Wiener indices of graphs, Iranian J. Math. Chem. 7(1), 11-17, (2016).
Azari M., Some results on vertex version and edge versions of modified Schultz index, Int. J. Math. Combin. 2, 65-82, (2016).
Azari M., Divanpour H., Splices, links, and their edge-degree distances, Trans. Comb. 6(4), 29-42, (2017).
Azari M., Iranmanesh A., Chemical graphs constructed from rooted product and their Zagreb indices, MATCH Commun. Math. Comput. Chem. 70, 901-919, (2013).
Azari M., Iranmanesh A., Some inequalities for the multiplicative sum Zagreb index of graph operations, J. Math. Inequal. 9(3), 727-738, (2015).
Azari M., Iranmanesh A., Multiplicative versions of Zagreb indices under subdivision operators, Bull. Georg. Natl. Acad. Sci. 10(2), 14-23, (2016).
Diudea M. V., QSPR/QSAR Studies by Molecular Descriptors, NOVA, New York, (2001).
Doslic T., Splices, links and their degree-weighted Wiener polynomials, Graph Theory Notes N. Y. 48, 47-55, (2005).
Eliasi M., Vukicevic D., Comparing the Multiplicative Zagreb indices, MATCH Commun. Math. Comput. Chem. 69, 765-773, (2013).
Eliasi M., Iranmanesh A., Gutman I., Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68, 217–230, (2012).
Falahati-Nezhad F., Iranmanesh A., Tehranian A., Azari M., Strict lower bounds on the multiplicative Zagreb indices of graph operations, Ars Combin. 117, 399-409, (2014).
Gutman I., Multiplicative Zagreb indices of trees, Bull. Inter. Math. Virtual Inst. 1, 13–19, (2011).
Gutman I., Trinajstic N., Graph theory and molecular orbitals. Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535-538, (1972).
Iranmanesh A., Hosseinzadeh M. A., Gutman I., On multiplicative Zagreb indices of graphs, Iranian J. Math. Chem. 3(2), 145-154, (2012).
Nacaroglu Y., Dilek Maden A., The upper bounds for multiplicative sum Zagreb index of some graph operations, J. Math. Inequal. 11(3), 749-761, (2017).
Reti T., Gutman I., Relations between ordinary and multiplicative Zagreb indices, Bull. Inter. Math. Virtual Inst. 2, 133-140, (2012).
Robbiano M., Gutman I., Jimenez R., San Martin B., Spectra of copies of Bethe trees attached to path and applications, Bull. Acad. Serbe Sci. Arts. (Cl. Sci. Math. Natur.) 137, 59-81, (2008).
Rojo O., The spectra of a graph obtained from copies of a generalized Bethe tree, Lin. Algebra Appl. 420, 490-507, (2007).
Todeschini R., Consonni V., New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64, 359–372, (2010).
Todeschini R., Ballabio D., Consonni V., Novel molecular descriptors based on functions of new vertex degrees, in: I. Gutman and B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications I, Univ. Kragujevac, Kragujevac, 73-100, (2010).
Trinajstic N., Chemical Graph Theory, CRC Press, Boca Raton, (1992).
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



