The generators of $3$-class group of some fields of degree $6$ over $\mathbb{Q}$

  • Siham Aouissi Mohamed 1st University
  • Moulay Chrif Ismaili Mohamed 1st University
  • Mohamed Talbi Regional Center of Professions of Education and Training in the Oriental
  • Abdelmalek Azizi Mohamed 1st University

Resumo

Let be k=Q(\sqrt[3]{p},\zeta_3),  where p is a prime number such that p \equiv 1 (mod  9), and let C_{k,3} the 3-component of the class group of k. In his work [7], Frank Gerth III proves a conjecture made by Calegari and Emerton which gives a necessary and sufficient conditions for C_{k,3} to be of rank two.  The present work display a consideration steps towards determination of generators of C_{k,3}, when C_{k,3} is isomorphic to Z/9Z \times Z/3Z.

Downloads

Não há dados estatísticos.

Biografia do Autor

Siham Aouissi, Mohamed 1st University

Department of Mathematics and Computer Sciences, Mohamed 1st University, Oujda - Morocco.

Moulay Chrif Ismaili, Mohamed 1st University

Department of Mathematics and Computer Sciences, Mohamed 1st University, Oujda - Morocco.

Abdelmalek Azizi, Mohamed 1st University

Department of Mathematics and Computer Sciences, Mohamed 1st University, Oujda - Morocco.

Referências

P. Barrucand and H. Cohn, Remarks on principal factors in a relative cubic field, J. Number Theory 3 (1971), 226–239.

F. Calegari and M. Emerton, On the ramification of Hecke algebras at Eisenstein primes, Invent. Math. 160 (2005), 97–144.

R. Dedekind, Uber die Anzahl der Idealklassen in reinen kubischen Zahlkorpern. J. fur reine und angewandte Mathematik, Bd. 121 (1900), 40-123.

F. Gerth III, On 3-Class Groups of Cyclic Cubic Extensions of Certain Number Fields, J. Number Theory 8 (1976), 84–94.

F. Gerth III, On 3-class groups of pure cubic fields, J. Reine Angew. Math 278/279 (1975), 52–62.

F. Gerth III, On 3-class groups of certain pure cubic fields, Australian Mathematical Society Volume 72, Number 3, December 2005, pp.471-476.

G. Gras, Sur les l-classes d’id´eaux dans les extensions cycliques relatives de degr´e premier l, Ann. Inst. Fourier, Grenoble, tome 23, fasc 3 (1973).

H. Hasse, Bericht Uber neuere Untersuchungen und probleme aus der Theorie der algebraischen Zahlkoberrper, I, Jber. Deutsch. Math. Verein. 35 (1926), 1–55.

H. Hasse, Newe Begrundung Und Verallgemeinerung der Theorie der Normenrest Symbols, Journal fur reine und ang. Math. 162 (1930), 134-143.

C. S. Herz, Construction of class fields, Seminar on Complex Multiplication, Springer-Verlag, New York, 1966.

Kenneth Ireland - Michael Rosen: A classical Introduction to Modern Number Theory, Second Edition, Springer 1992.

The PARI Group, PARI/GP, Version 2.9.4, Bordeaux, 2017, (http://pari.math.u-bordeaux.fr).

Publicado
2020-10-09
Seção
Artigos