The necessary and sufficient conditions for wavelet frames in Sobolev space over local fields

  • Ashish Pathak Banaras Hindu University
  • Dileep Kumar Banaras Hindu University
  • Guru P. Singh Banaras Hindu University

Abstract

In this paper we construct wavelet frame on Sobolev space. A necessary condition and suffcient conditions for wavelet frames in Sobolev space are given.

Downloads

Download data is not yet available.

Author Biography

Ashish Pathak, Banaras Hindu University

Ashish Pathak

Assistant Professor

Department of Mathematics

Institute of Sciences

Varanasi-221005, India.

E-mail: ashishpathak@bhu.ac.in

References

C. K. Chui, An Introduction to Wavelets, Wavelet Analysis and Its Applications, Academic Press, Boston, MA, 1, (1992).

S. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Trans. Amer. Math. Soc. 315, 69-87, (1989).

Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge, 1992.

S. Dahlke, Multiresolution analysis and wavelets on locally compact abelian groups. in Wavelets, images, and surface fitting, A K Peters, 141-156, (1994).

J. J. Benedetto and R. L. Benedetto, A wavelet theory for local fields and related groups, J. Geom. Anal. 14, 423-456, (2004).

R. L. Benedetto, Examples of wavelets for local fields, in: Wavelets, Frames and Operator Theory, Contemporary Mathematics, American Mathematical Society, Providence, RI,345, 27-47,(2004).

S. Albeverio and S. Kozyrev, Multidimensional basis of p-adic wavelets and representation theory, P-Adic Numbers Ultrametric, Anal. Appl. 1, 181-189, (2009).

A. Y. Khrennikov, V. M. Shelkovich and M. Skopina, p-adic refinable functions and MRA-based wavelets, J. Approx. Theory 161, 226-238 (2009).

S. Kozyrev, Wavelet theory as p-adic spectral analysis Izv. Ross. Akad. Nauk Ser. Mat. 66, 149-158, (2002).

H. Jiang, D. Li and N. Jin, Multiresolution analysis on local fields, J. Math. Anal. Appl. 294, 523-532, (2004).

D. Ramakrishnan and R. J. Valenza, Fourier Analysis on Number Fields, Graduate Texts in Mathematics, Springer-Verlag, New York,186 (1999).

M. H. Taibleson, Fourier Analysis on Local Fields, Mathematical Notes, Princeton University Press, Princeton, NJ,15 (1975).

Biswaranjan Behera and Qaiser Jahan, Multiresolution analysis on local fields and characterization of scaling functions, Adv. Pure Appl. Math. 3 , 181-202, (2012).

F. Bastin and P.Laubin, Regular Compactly Supported Wavelets in Sobolev spaces, Duke Mathematical Journal, 87 (3), 481-508, (1997).

Ashish Pathak and Guru P. Singh, Wavelet in Sobolev space over local fields of positive characteristic, Int. J. of Wavelets Multiresolunt. Inf. Process, 16(3), 16pp, (2018).

Ashish Pathak, Dileep Kumar and Guru P. Singh Multiresolution Analysis on Sobolev space over local fields of positive characteristic and Characterization of scaling function (preprint).

Published
2020-10-09
Section
Research Articles

Funding data