On δ- Lorentzian trans Sasakian manifold with semi-symmetric metric connection
Resumo
The aim of the present research is to study the δ-Lorentzian trans Sasakian manifolds with a semi-symmetric metric connection. We have found the expressions for curvature tensors, Ricci curvature tensors and scalar curvature of the δ-Lorentzian trans Sasakian manifolds with a semi-symmetric metric and metric connection. Also, we have discussed some results on quasi-projectively flat and ϕ-projectively flat manifolds endowed with a semi-symmetric-metric connection. It shown that the manifold satisfying
¯
R. ¯ S = 0,
¯
P, ¯ S = 0.
Lastly, we have obtained the conditions for the δ-Lorentzian Trans Sasakian manifolds with a semi-symmetric metric connection to be conformally flat and ξ-conformally flat.
Downloads
Referências
Bagewadi, C. S. and Gatti, N. B., On irrotational quasi-conformal curvature tensor. Tensor.N.S., 64, 284-258, (2003).
Bagewadi, C. S., and Kumar, E. G., Note on Trans-Sasakian Manifolds. Tensor. N. S., 65, 80-88 (2004).
Bagewadi, C. S., and Venkatesha, Some Curvature Tensors on a Trans-Sasakian Manifold, Turk. J. Math. 31 (2007), 111-121.
Bhati, S. M., On weakly Ricci φ-symmetric δ-Lorentzian trans Sasakian manifolds, Bull. Math. Anal. Appl., vol. 5, (1), (2013), 36-43.
Bartolotti, E., Sulla geometria della variata a connection affine. Ann. di Mat. 4(8) (1930), 53-101.
Bejancu A. and Duggal K. L., Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math. Math. Sci. 16(1993), no. 3, 545-556.
Blair, D. E., Contact manifolds in Riemannian geometry, Lecture note in Mathematics, 509, Springer-Verlag Berlin-New York, 1976.
De, U. C and Shaikh, A. A., K-contact and Sasakian manifolds with conservative quasi-conformal curvature tensor. Bull. Cal. Math. Soc., 89, 349-354, (1997).
De, U. C. and Sarkar, A., On ǫ-Kenmotsu manifold, Hardonic J. 32 (2009), no.2, 231-242.
Friedmann, A. and Schouten, J. A., Uber die Geometric der halbsymmetrischen Ubertragung, Math. Z. 21 (1924), 211-223.
Gray, A. and Harvella, L. M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123(4) (1980), 35-58.
Gill, H. and Dube, K. K., Generalized CR- Submanifolds of a trans Lorentzian para Sasakian manifold, Proc. Nat. Acad. Sci. India Sec. A Phys. 2(2006), 119-124.
Hayden, H. A., Subspaces of space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
Hirica, I. E. and Nicolescu, L., Conformal connections on Lyra manifolds, Balkan J. Geom. Appl., 13 (2008), 43-49.
Ikawa, T. and Erdogan, M., Sasakian manifolds with Lorentzian metric, Kyungpook Math. J. 35(1996), 517-526.
Jun, J. B., De, U. C. and Pathak, G., On Kenmotsu manifolds, J. Korean Math. Soc. 42 (2005), no. 3, 435-445.
Marrero, J. C., The local structure of Trans-Sasakian manifolds, Annali di Mat. Pura ed Appl. 162 (1992), 77-86.
Matsumoto, K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Science, 2(1989), 151-156.
Oubina, J. A., New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187-193
Pathak, G. and De, U. C., On a semi-symmetric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc. 94 (2002), no. 4, 319-324.
Pujar, S. S., and Khairnar, V. J., On Lorentzian trans-Sasakian manifold-I, Int. J. of Ultra Sciences of Physical Sciences, 23(1)(2011), 53-66.
Pujar, S. S., On Lorentzian Sasakian manifolds, to appear in Antactica J. of Mathematics 8(2012).
Sharfuddin, A. and Hussain, S. I., Semi-symmetric metric connections in almost contact manifolds, Tensor (N.S.), 30(1976), 133-139.
Shukla, S. S. and Singh, D. D., On (ǫ)-Trans-Sasakian manifolds, Int. J. Math. Anal. 49(4) (2010), 2401-2414.
Siddiqi, M. D, Haseeb, A. and Ahmad, M., A Note On Generalized Ricci-Recurrent (ǫ, δ)-Trans-Sasakian Manifolds, Palestine J. Math., Vol. 4(1), 156-163 (2015)
Tripathi, M. M., On a semi-symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16(1999), 67-71.
Tripathi, M. M., Kilic, E., Perktas S. Y. and Keles, S., Indefinite almost para-contact metric manifolds, Int. J. Math. and Math. Sci. (2010), art. id 846195, pp. 19.
Takahashi, T., Sasakian manifolds with Pseudo -Riemannian metric, Tohoku Math.J. 21 (1969),271-290.
Tanno, S., The automorphism groups of almost contact Riemannian manifolds, Tohoku Math.J. 21 (1969),21-38.
Xufeng, X. and Xiaoli, C., Two theorem on ǫ-Sasakian manifolds, Int. J. Math. Math. Sci. 21 (1998), no. 2, 249-54.
Yaliniz, A.F., Yildiz, A. and Turan, M., On three-dimensional Lorentzian β- Kenmotsu manifolds, Kuwait J. Sci. Eng. 36 (2009), 51-62.
Yildiz, A., Turan, M. and Murathan, C., A class of Lorentzian α- Sasakian manifolds, Kyung-pook Math. J. 49(2009), 789 -799.
Yano, K., On semi-symmetric metric connections, Revue Roumaine De Math. Pures Appl. 15(1970), 1579-1586.
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).