Analysis of estimators for Stokes problem using a mixed approximation

  • El Akkad Abdeslam CRMEF Fès
  • Ahmed Elkhalfi Facult´e des Sciences et Techniques

Resumen

In this work, we introduce the steady Stokes equations with a new boundary condition, generalizes the Dirichlet and the Neumann conditions. Then we derive an adequate variational formulation of Stokes equations. It includes algorithms for discretization by mixed finite element methods. We use a block diagonal preconditioners for Stokes problem. We obtain a faster convergence when applying the preconditioned MINRES method. Two types of a posteriori error indicator are introduced and are shown to give global error estimates that are equivalent to the true discretization error. In order to evaluate the performance of the method, the numerical results are compared with some previously published works or with others coming from commercial code like Adina system.

CROSSMARK_Color_horizontal.svg

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Ahmed Elkhalfi, Facult´e des Sciences et Techniques

Laboratoire G´enie Me´canique

Citas

Brezzi, F., and Fortin, M., Mixed and Hybrid Finite Element Method, Springer Verlag, New York, 1991.

Roberts, J., and Thomas, J. M., Mixed and Hybrid methods, Handbook of numerical analysis II, Finite element methods 1 , P. Ciarlet and J. Lions, Amsterdam, 1989.

Chavent, G., and Jaffre, J., Mathematical Models and Finite Elements for Reservoir Simulation, Elsevier Science Publishers B.V, Netherlands, 1986.

Ainsworth, M., and Oden, J., A posteriori error estimates for Stokes and Oseen equations. SIAM J. Numer. Anal 34 , 228-245, (1997).

Ainsworth, M., and Oden, J., A Posteriori Error Estimation in Finite Element Analysis, Wiley, New York, [264, 266, 330, 334, 335], 2000.

Verfurth, R., A Review of a posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester, 1996.

Bank, R. E., Welfert, B., A posteriori error estimates for the Stokes problem. SIAM J. Numer. Anal 28, 591-623, (1991).

Verfurth, R., A posteriori error estimators for the Stokes equations. Numer. Math 55, 309- 325, (1989).

Elman, H., Silvester, D., Wathen, A., Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics, 2nd edn. Oxford University Press, Oxford, 2014.

Benzi, M., Golub, G. H., Liesen, J., Numerical solution of saddle point problems, Acta Numer 14, 1-137, (2005).

Kuznetsov, Y. A., Efficient iterative solvers for elliptic finite element problems on nonmatching grids. Russ. J. Numer. Anal. Modelling 10, 187-211, (1995).

Murphy, M. F., Golub, G. H., Wathen, A. J., A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput 21, 1969-1972, (2000).

Axelsson, O., Neytcheva, M., Eigenvalue estimates for preconditioned saddle point matrices. Numer. Linear Alg. Appl 13, 339-360, (2006).

Silvester, D., Wathen, A., Fast iterative solution of stabilised Stokes systems. Part II: Using general block preconditioners. SIAM J. Numer. Anal 31, 1352-1367, (1994).

Liao, Q., Silvester, D., A simple yet effective a posteriori estimator for classical mixed approximation of Stokes equations. Appl. Numer. Math 62, 1242-1256, (2010).

Wathen, A., Silvester, D., Fast iterative solution of stabilised Stokes systems. Part I: Using simple diagonal preconditioners. SIAM J. Numer. Anal 30, 630-649, (1993).

Turek, S., Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach. Lecture Notes in Computational Science and Engineering. Springer, Berlin, 2012.

Golub, G. H., Varga, R. S., Chebyshev semi-iterative methods, successive over-relaxation iterative methods, and second order Richardson iterative methods. Numer. Math 3, 147-156, (1961).

Sani, R. L., Gresho, P. M., Lee, R. L., Griffiths, D. F., The cause and cure (!) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations: Part I. Int. J. Numer. Methods Fluids 1, 17-43, (1981).

John, V., Residual a posteriori error estimates for two-level finite element methods for the Navier-Stokes equations. Appl. Numer. Math 37, 503-518, (2001).

Carstensen, C., Funken, S. A., A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems. Math. Comp 70, 1353-1381, (2001).

Wu, D. H., Currie, I. G., Analysis of a posteriori error indicator in viscous flows. Int. J. Num. Meth. Heat Fluid Flow 12, 306-327, (2001).

Nocedal, J., and Wright, S. J., Numerical Optimization, Springer, New York, NY, 1999.

Zhang, T., Zhao, X., Lei., G., A posteriori error estimates of stabilized finite element method for the steady Navier-Stokes problem. Appl. Math. Comput 219, 9081-9092, (2013).

Bao, W., Barrett, J. W., A priori and a posteriori error bounds for a non conforming linear finite element approximation of a Non-Newtonian flow. Math. Model. Numer. Anal 32, 843- 858, (1998).

Saad, Y., Krylov subspace methods for solving large unsymmetric linear systems. Math. Comput 37, 105-126, (1981).

Saad, Y., Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput 7, 856-869, (1986).

Gresho, P. M., Sani, R. L., Incompressible flow and the finite element method, John Wiley and Sons, 1998.

Girault, V., Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, SpringerVerlag, Berlin, 1986.

Duminil, S., Sadok, H., Silvester, D., Fast solvers for discretized Navier-Stokes problems using vector extrapolation. Numer. Algor 66, 89-104, (2014).

Erturk, E., Corke, T. C., Gokcol, C., Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Meth. Fluids 48, 747-774, (2005).

Babuska, I., Error-bounds for finite element method. Numer. Math 16, 322-333, (1971).

Ghia, U., Ghia, K., Shin, C., High Re solution for incompressible viscous flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys 48, 387-395, (1982).

Elman, H. C., Preconditioning for the steady state Navier-Stokes equations with low viscosity. SIAM J. Sci. Comp 20, 1299-1316, (1999).

Gauthier, A., Saleri, F., Veneziani, A., A fast preconditioner for the incompressible NavierStokes equations. Comput. Visual. Sci 6, 105-112, (2004).

Brezzi, F., On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrangian multipliers. RAIRO Anal. Num´er 8, 129-151, (1974).

Raviart, P. A., Thomas, J.M., A mixed finite element method for second order elliptic problems, in: Mathematical Aspects of Finite Element Method, Lecture Notes in Mathematics, Springer, New York, 606, 292-315, 1977.

Pearson, J. W., Pestana, J., Silvester, D. J., Refined saddle-point preconditioners for discretized Stokes problems. Number. Math, DOI: 10.1007/s00211-017-0908-4, (2017).

Dean, E., Glowinski, R., On some finite element methods for the numerical solution of incompressible viscous flow. In:Gunzburger,M., Nicolaides, R. (eds.) Incompressible Computational Fluid Dynamics. Cambridge University Press, Cambridge, 1993.

Wathen, A. J., Rees, T., Chebyshev semi-iteration in preconditioning for problems including the mass matrix. Electron. Trans. Numer. Anal 34, 125-135, (2009).

Elakkad, A., Elkhalfi, A., Guessous, N., An a posteriori error estimate for mixed finite element approximations of the Navier-Stokes equations. J. Korean Math. Soc 48 (3), 529- 550, (2011).

Garcia, S., The Lid-Driven Square Cavity Flow: from Stationary to Time Periodic and Chaotic. Commun. Comput. Phys 2, 900-932, (2007).

Wathen, A. J., Fischer, B., Silvester, D. J., The convergence rate of the minimum residual method for the Stokes problem. Numer. Math 71, 121-134, (1995).

Marin, M., A temporally evolutionary equation in elasticity of micropolar bodies with voids. UPB Sci. Bull. Ser. A: Appl. Math. Phys 60 (3-4), 3-12, (1998).

Marin, M., Weak Solutions in Elasticity of Dipolar Porous Materials. Math. Probl. Eng 2008 (158908), 1-8, (2008).

Marin, M., An approach of a heat-flux dependent theory for micropolar porous media. Meccanica 51 (5), 1127-1133, (2016).

Publicado
2020-10-11
Sección
Articles