Renormalized solutions for some nonlinear nonhomogeneous elliptic problems with Neumann boundary conditions and right hand side measure
Résumé
Our aim in this paper is to study the existence of renormalized solution for a class of nonlinear p(x)-Laplace problems with Neumann nonhomogeneous boundary conditions and diuse Radon measure data which does not charge the sets of zero p(.)-capacity
Téléchargements
Références
E. Azroul, A. Barbara, M. B. Benboubker and S. Ouaro, Renormalized Neumann nonhomogeneous boundary conditions and L1 -data, An. Univ. Craiova Ser. Mat. Inform. 40 (2013), no. 1, 9–22.
E. Azroul, M. B. Benboubker and M. Rhoudaf, Entropy solution for some p(x)-quasilinear problems with right-hand side measure, African Diaspora Journal of Mathematics, Vol.13, No.2 (2012), 23–44.
E. Akdim, E. Azroul and M. Rhoudaf, Entropy solutions of nonlinear elliptic equations with measurable boundary conditions and without strict monotonicity conditions, European Journal of Applied Mathematics, Vol.1, 4 (2008), 56-71.
F. Andreu, N. Iqbida, F. M. Ma´on and J. Toledo, L1 existence and uniqueness results for Quasi-linear elliptic equations with nonlinear boundary conditions, Annales de l’Institut de Henri poincar´e (c) Analyse non lin´eaire, 20 (2007), 61–89.
F. Andreu, J. M. Mazon,S. Sequera De eon and J. Toledo, Quasi-linear elliptic and parabolic equations in L 1 with nonlinear boundary conditions, Advances in Mathematical sciences and Applications, 7 (1) (1997), 183–213.
P. Benilan, L. Boccardo, T. Galloet, M. Pierre and J. L. Vazquez, An L1 theory of existence and uniqueness of nonlinear elliptic equations, Annali della scuola Normale Superiore di Pisa. classe di scienze, 22 (1995), 214-273.
M.B. Benboubker, H. Chrayteh, M. El Moumni and H. Hjiaj, Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data, Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 1, 151–169.
M. B. Benboubker, S. Ouaro and U. Traore, Entropy solutions for nonlinear nonhomogeneous Neumann problems involving the generalized p(x)-Laplace operator and measure data, Journal of Nonlinear Evolution Equations and Application, (5) 2014, 53–76
H. Brezis, Analyse Fonctionnelle , theorie et applications. Paris Masson, 1983.
H. Chrayteh, Qualitative Properties of Eigenvectors Related to Multivalued Operators and some Existence Results , Journal of Optimisation Theory and Applications, Vol.155, (2012), 507–533.
G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann Scuola Norm Sup Pisa Cl Sci (4), 1999, 28(4): 741-808
R J. DiPerna and P L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann Math, 1989, 130(1): 321–366
L. Diening, P. Haejulehto, P. Hasto and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Vol.2017, springer-verlag, Heidelberg, 2011.
P. Halmos. Measure Theory, D. Van Nostrand, New york, 1950.
X. L. Fan and D. Zhao, On the generalized Orlicz-Sobolev space Wk,p(x) (Ω), Journal of Gansu Education college, 12, (1)(1998), 1–6.
N. Igbida, S. Ouaro and S. Soma, Elliptic problem involving diffuse measure data , Journal of Differential Equations, 253, No.12(2012), 3159–3183.
F. Murat Soluciones renormalizadas de EDP elipticas non lineales, Laboratoire d’Analyse Num´erique, Paris VI, 1993.
S. Ouaro and A. Ouedraogo, Entropy solution to an elliptic problem with nonlinear boundary conditions. An Univ Craiova Ser Mat Inform, 2012, 39(2): 148–181
S. Ouaro, A. Ouedraogo and S. Soma, Multivalued homogeneous Neumann problem involving diffuse measure data and variable exponent, submitted.
S. Ouaro and A. Tchousso, Well-posedness result for nonlinear elliptic problem involving variable exponent and Robin boundary condition, African Diaspora Journal of Mathematics, 11, No.2(2011), 36–64.
S. Ouaro and S. Soma, Weak and entropy solutions to nonlinear Neumann boundary problems with variable exponent, Complex variables and Elliptic Equations, Vol.56, No.7–9 (2011), 829– 851.
L. Wang, Y. Fan and W. Ge, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Analysis. 71(2009), 4259–4270.
P. Wittbold and A. Zimmermann, Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponent and L1 -data, Nonlinear Anal. Theory Methods Appl. 72 (2010), 2990-3008
J. Yao, Solutions for Neumann boundary value problems involving p(x)-Laplace operator, Nonlinear Analysis, 68 (2008), 1271–1283.
D. Zhao, W. J. Qiang and X. L. Fan, On generalized Orlicz spaces L p(x) (Ω), J. Gansu Sci, 9(1997), No. 2, 1–7.
M. Sanchon and J. M. Urbano, Entropy Solution for the p(x)-Laplace equation, Transactions of the American Mathematical Society. 361 (2009), 6387–6405.
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).