A sequence involving an extended Struve function via a differential operator

Resumen

Various extensions of the Struve function have been presented and investigated. Here we aim to introduce an extended Struve function involving the $\mathtt{k}$-gamma function. Then, by using a known differential operator, we introduce a sequence of functions associated with the above introduced extended Struve function and investigate its properties such as generating relations and a finite summation formula. The results presented here, being very general, are also pointed out to yield a number of relatively simple identities.

CROSSMARK_Color_horizontal.svg

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Gurmej Singh, Mata Sahib Kaur Girls College

Singhania University

Citas

P. Agarwal, M. Chand and G. Singh, On new sequence of functions involving the product of F α,β p (·), Commun. Numer. Anal. 2015(2), 139–148, (2015).

P. Agarwal and M. Chand, On new sequence of functions involving pFq, South Asian J. Math. 3(3), 199–210, (2013).

P. Agarwal and M. Chand, A new sequence of functions involving pjFqj , Math. Sci. Appl. E-Notes 1(2), 173–190, (2013).

P. Agarwal and M. Chand, Graphical interpretation of the new sequence of functions involving Mittage-Leffler function using Matlab, American J. Math. Statis. 3(2), 73–83, (2013). https://doi.org.10.5923/j.ajms.20130302.02.

P. Agarwal, M. Chand and S. Dwivedi, A study on new sequence of functions involving H-function, American J. Appl. Math. Statis. 2(1) (2014), 34–39.

R. M. Ali, S. R. Mondal and K. S. Nisar, Monotonicity properties and inequalities for the generalized Struve functions, J. Korean Math. Soc. 54(2), 575-—598, (2017).

K. N. Bhowmick, Some relations between a generalized Struve’s function and hypergeometric functions, Vijnana Parishad Anusandhan Patrika 5, 93-–99, (1962).

K. N. Bhowmick, A generalized Struve’s function and its recurrence formula, Vijnana Parishad Anusandhan Patrika 6, 1-11, (1963).

Y. A. Brychkov, Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas, CRC Press, Taylor & Fancis Group, Boca Raton, London, New York, 2008.

M. Chand, A certain sequence of functions involving the Aleph function, De Gruyter Open 1, 187–191, (2016).

R. C. S. Chandel, A new class of polynomials, Indian J. Math. 15(1), 41–49, (1973).

R. C. S. Chandel, A further note on the class of polynomials T α,k n (x, r, p), Indian J. Math. 16(1), 39–48, (1974).

A. M. Chak, A class of polynomials and generalization of Stirling numbers, Duke J. Math. 23(1), 45–55, (1956).

S. K. Chatterjea, On generalization of Laguerre polynomials, Rend. Mat. Univ. Padova 34, 180–190, (1964).

R. Dıaz and E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat. 15(2) (2007), 179–192.

H. W. Gould and A. T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J. 29, 51–63, (1962).

C. M. Joshi and M. L. Prajapat, The operator Ta,k, and a generalization of certain classical polynomials, Kyungpook Math. J. 15(2), 191–199, (1975).

B. N. Kanth, Integrals involving generalized Struve’s function, Nepali Math. Sci. Rep. 6, 61—64, (1981).

H. B. Mittal, A generalization of Laguerre polynomial, Publ. Math. Debrecen 18, 53–58, (1971).

H. B. Mittal, Operational representations for the generalized Laguerre polynomial, Glasnik Mat. Ser III 26(6), 45–53, (1971).

H. B. Mittal, Bilinear and Bilateral generating relations, American J. Math. 99, 23–45, (1977).

K. S. Nisar and A. Atangana, Exact solution of fractional kinetic equation in terms of Struve functions, (2016).

K. S. Nisar, D. Baleanu and Mohamed Al Qurashi, Fractional calculus and application of generalized Struve function, Springer Plus, (2016). https://doi.org.10.1186/s40064-016-2560-3.

K. S. Nisar and S. R. Mondal, Some integrals involving generalized k-Struve functions, Commun. Numer. Anal. 2017 (1), 19–24, (2017).

K. S. Nisar, S. R. Mondal and J. Choi, Certain inequalities involving the k-Struve function, J. Inequal. Appl. 2017, Article ID 71, (2017). https://doi.org/10.1186/s13660-017-1343-x.

K. S. Nisar, S. D. Purohit and S. R. Mondal, Generalized fractional kinetic equations involving generalized Struve function of the first kind, J. King Saud Univ. Sci. 28(2), 167–171, (2016).

H. Orhan and N. Yagmur, Starlikeness and convexity of generalized Struve functions, Abs. Appl. Anal. 2013, Art. ID 954513:6, (2013).

H. Orhan and N. Yagmur, Geometric properties of generalized Struve functions, Ann Alexandru Ioan Cuza Univ-Math. (2014). doi:10.2478/aicu-2014-0007

K. R. Patil and N. K. Thakare, Operational formulas for a function defined by a generalized Rodrigues formula-II, Sci. J. Shivaji Univ. 15, 1–10, (1975).

R. P. Singh, Generalized Struve’s function and its recurrence relations, Ranchi Univ Math J 5, 67–75, (1974).

R. P. Singh, Generalized Struve’s function and its recurrence equation, Vijnana Parishad Anusandhan Patrika 28, 287-–292, (1985).

R. P. Singh, Some integral representation of generalized Struve’s function, Math. Ed. (Siwan) 22, 91-–94, (1988).

R. P. Singh, On definite integrals involving generalized Struve’s function, Math Ed (Siwan) 22, 62-66, (1988).

R. P. Singh, Infinite integrals involving generalized Struve function, Math. Ed. (Siwan) 23, 30-36, (1989).

P. N. Srivastava, Some operational formulas and generalized generating function, Math. Ed. 8, 19–22, (1974).

H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.

A. K. Shukla and J. C. Prajapati, On some properties of a class of Polynomials suggested by Mittal, Proyecciones J. Math. 26(2), 145–156, (2007).

A. N. Srivastava and S. N. Singh, Some generating relations connected with a function defined by a generalized Rodrigues formula, Indian J. Pure Appl. Math. 10(10), 1312–1317, (1979).

H. M. Srivastava and J. P. Singh, A class of polynomials defined by generalized Rodrigues formula, Ann. Mat. Pura Appl. 90(4), 75–85, (1971).

Publicado
2020-10-11
Sección
Articles