Existence and multiplicity of solutions for a p(x)-biharmonic problem with Neumann boundary conditions

Resumen

In this paper, we study the p(x)-biharmonique problem with Neumann boundary conditions. Using the three critical point Theorem, we establish the existence of at least three solutions of this problem.



Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Fouzia Moradi, Université Mohammed 1

Département de Mathématiques et Informatiques

Citas

A. Ayoujil, A. R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable exponent. Nonlinear Anal. (2009), vol. 71, no. 10, pp. 4916-4926. https://doi.org/10.1016/j.na.2009.03.074

X. L. Fan, Eigenvalues of the p(x)- Laplacian Neumann problems. Nonlinear Anal. 67 (2007) 2982-2992. https://doi.org/10.1016/j.na.2006.09.052

X. L. Fan, X. Fan, A Knobloch-type result for p(t) Laplacian systems. J. Math. Anal. Appl. 282 (2003) 453-464. https://doi.org/10.1016/S0022-247X(02)00376-1

X. L. Fan, Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5

X. L. Fan, Q. H. Zhang and D. Zhao, Eigenvalues of p(x)- Laplacian Dirichlet problem. J. Math. Anal. Appl. 302 (2005), 306-317. https://doi.org/10.1016/j.jmaa.2003.11.020

X. L. Fan and D. Zhao, On the space Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001) 424-446. https://doi.org/10.1006/jmaa.2000.7617

D.Gilbarg & N.S.Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983.

T. C. Halsey, Electrorheological fluids, Science 258 (1992), 761-766. https://doi.org/10.1126/science.258.5083.761

P. Harjulehto, P. Hasto, Ut Van Le, M. Nuortio, Overview of differential equations with non-standard growt h, preprint (2009).

R. B. Israel & R. A. Adams, Sobolev Space. August 2002.

M. Mihailescu, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal. 67 (2007) 1419-1425. https://doi.org/10.1016/j.na.2006.07.027

B. Ricceri, On three critical points theorem. Arch.Math. (Basel) 75, 220-226 (2000). https://doi.org/10.1007/s000130050496

M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/BFb0104029

L. L. Wang Y. H. Fan & W. G. Ge, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator. Nonlinear Analysis. (2009), vol. 71, no. 9, pp. 4259-4270. https://doi.org/10.1016/j.na.2009.02.116

J. H. Yao, Solution for Neumann boundary problems involving the p(x)-Laplace operators, Nonlinear Anal. T.M.A. 68 (2008) 1271-1283. https://doi.org/10.1016/j.na.2006.12.020

E.Zeidler, Nonlinear Function Analysis and its Applications, vol.II/B: Nonlinear Monotone Operators, Springer, New York, 1990. https://doi.org/10.1007/978-1-4612-0981-2

Publicado
2021-12-16
Sección
Articles