Topological rank of (-1, 1) metabelian algebras
Resumo
In 1981, Pchelintsev developed the idea for arranging non-nilpotent subvarieties in a given variety by using topological rank for spechtian varieties of algebra as a fixed tool. In this paper we show that for a given topological rank over a field of 2, 3 ? torsion free of (-1; 1) metabelian algebra solvable of index 2 that are Lie-nilpotent of step not more than p is equal to P.
Downloads
Referências
Badeev, A. V., the variety N3N2 of commutative alternative nil-algebras of index 3 over a field of charcterstic3, Fundam. Prikl. Mat. 8 335-336 Russian(2002).
Kuz'min, A. M., On Spechtian Varieties of right alternative algebras, J. Math. Sci., New York 149 1098-1106 1098-1106; translation from Fundam. Prikl. Mat. 12 89-100, (2006). https://doi.org/10.1007/s10958-008-0048-6
Il'tyakov, A. V., On finite basis of identities of Lie algebra representations, Nova J. Algebra Geom. 1 207-259, (1992).
Il'tyakov, A. V., Finiteness of basis of identities of a finitely generated alternative PI-algebra over a field of characteristic zero, Sib. Math. J. 32, 948-961 (1991) https://doi.org/10.1007/BF00971199 translation from Sib. Mat. Zh. 32 61-76,(1991).
Belov, A.Ya., Conterexamples to the Specht problem, Sb. Math. 191 329-340, (2000) https://doi.org/10.1070/SM2000v191n03ABEH000460 translation form Mat.sb.191 13-14, (2000). https://doi.org/10.4213/sm490
Vais A.Ya., Zel'manov, E. I., Kemer's theorem for finitly generated Jordan algebras, Sov. Math. 33 38-47, (1989) translation from Izv. Vyssh. Uchebn. Zaved. Mat. 6 42-51, (1989).
Isaev, I. M., Finite-dimensional right alternative algebras that do not generate finitly based varietities , Algebra Logic 25 86-96, (1986) translation from Algebra Logika 25 136-153, (1986). https://doi.org/10.1007/BF01978883
Jayalakshmi, K., and Hari babu, K., (-1, 1) metabelian rings , Bol. Soc. Paran. Mat. (3s.) v. 35 2 115-125, (2017). https://doi.org/10.5269/bspm.v35i2.26250
Zhavlakov, K. N., Slin'ko, A. M., Shestakov, I.P., and Shirshov, A.I., Rings that are nearly associative, translated from the Russian by Harry F.Smith.(Acedamic press,Inc., New York- London, (1982).
Pchelintsev, S. V., On identities of right alternative metabelian grassmann algebras, J. Math. Sci., New York 154 230-248,(2008) https://doi.org/10.1007/s10958-008-9162-8 translation from Fundam. Prikl. Mat. 13 157-183, (2007).
Pchelintsev, S. V., Varieties of algebras that are solvable of index 2, Math. USSR, Sb 43 159-180, (1982) https://doi.org/10.1070/SM1982v043n02ABEH002442 translation from Mat. Sb. 115 (157) 179-203 (1981).
Platonova, S. V., Varieties of two- step solvable algebras of type (γ, δ), J. Math. Sci., New York 139 6762-6779, (2006) https://doi.org/10.1007/s10958-006-0389-y translation from Fundam. Prikl. Mat. 10 157-180, (2004).
Belkin, V. P., Varietities of right alternative algebras, Algebra Logic 15 309-320, (1976) https://doi.org/10.1007/BF02069105 translation from Algebra Logika 15 491-508, (1976).
Medvedev, Yu. A., Example of a variety of solvable alternative algebras over a field of characteristic 2 having no finite basis of identities, Algebra Logic 19 191-201, (1980) https://doi.org/10.1007/BF01668996 translation from Algebra Logika 19 300-313, (1980).
Medvedev, Yu. A., Finite basis theorem on varieties with a 2- term identity, Algebra Logic 17 458-472, (1978) https://doi.org/10.1007/BF01673576 translation from Algebra Logika 17 705-726, (1978).
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).
Funding data
-
University Grants Commission
Grant numbers 42-17 (2013)