Coefficient inequalities for classes of univalent functions defined by q derivatives
Resumen
Using the principal of subordination and the qderivative, we obtain sharp bounds for some classes of univalent functions.
Descargas
Citas
R. M. Ali, V. Ravichandran and N. Seenivasagan, Coefficient bounds for p−valent functions, Appl. Math. Comput. 187, 35-46, (2007). https://doi.org/10.1016/j.amc.2006.08.100
M. K. Aouf, A. O. Mostafa, and T. M. Seoudy, Subordination and Superordination Results for Analytic Functions Involving Certain Operators, Lambert Acad. Publishing, 2014.
T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., ClujNapoca, 2005.
F. H. Jackson, On q -definite integrals, Q. J. Pure Appl. Math. 41, 193-203, (1910).
F. H. Jackson, On q -functions and a certain difference operator, Proc. Roy. Soc. Edinburgh Sect. A, 46, 253-281, (1908). https://doi.org/10.1017/S0080456800002751
W. Ma, and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press, 157-169, (1994).
S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied. Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000
C. Ramachandran, T. Soupramanien and B. Frasin, New subclasses of analytic functions associated with q−difference operator, Eur. J. Pure Appl. Math. 10, no.2, 348-362, (2017).
V. Ravichandran, Y., Polatoglu, M. Bolcal, and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat. 34, 9-15, (2005).
T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q−starlike and q−convex functions of complex order, J. Math. Inequal. 10, no. 1, 135-145, (2016). https://doi.org/10.7153/jmi-10-11
T. M. Seoudy and M. K. Aouf, On an unified class of functions of complex order, Theory Appl. Math. Comput. Sci. 3, no. 1, 32-37, (2013).
T. N. Shanmugam, S. Owa, C. Ramachandran, S. Sivasubramanian and Y. Nakamura, On certain coefficient inequalities for multivalent functions, J. Math. Inequal. 3, no. 1, 31-41, (2009). https://doi.org/10.7153/jmi-03-04
Derechos de autor 2022 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).