Construction of inverse curves of general helices in the Sol space Sol³
Resumo
In this paper, we study inverse curves of general helices in the Sol³. Finally, we find out explicit parametric equations of inverse curves in the Sol³.
Downloads
Referências
A. Gray, Modern differential geometry of curves and surfaces with mathematica. CRC Press LLC, (1998).
G. Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2), 130-144, (1986).
T. Korpınar and E. Turhan, On Spacelike Biharmonic Slant Helices According to Bishop Frame in the Lorentzian Group of Rigid Motions E(1, 1), Bol. Soc. Paran. Mat. 30 (2), 91-100, (2012). https://doi.org/10.5269/bspm.v30i2.14558
M. A. Lancret: Memoire sur les courbes a double courbure, Memoires presentes al Institut 1, 416-454, (1806).
E. Loubeau and S. Montaldo, Biminimal immersions in space forms, preprint, 2004, math.DG/0405320 v1.
Y. Ou and Z. Wang, Linear Biharmonic Maps into Sol, Nil and Heisenberg Spaces, Mediterr. j. math. 5, 379-394, (2008). https://doi.org/10.1007/s00009-008-0157-y
D. J. Struik, Lectures on Classical Differential Geometry, Dover, New-York, (1988).
E. Turhan and T. Korpınar, Parametric equations of general helices in the sol space Sol3 , Bol. Soc. Paran. Mat. 31 (1), 99-104, (2013). https://doi.org/10.5269/bspm.v31i1.15331
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).