Existence of positive solutions of Kirchhoff hyperbolic systems with multiple parameters
Résumé
In this paper, by using sub-super solutions method, we study the existence of weak positive solution of Kirrchoff hyperbolic systems in bounded domains with multiple parameters. These results extend and improve many results in the literature.
Téléchargements
Références
Alves, C. O. and Correa, F. J. S. A., On existence of solutions for a class of problem involving a nonlinear operator, Communications on Applied Nonlinear Analysis., 8, (2001), 43-56.
Azouz, N, and Bensedik, A., Existence result for an elliptic equation of Kirchhoff -type with changing sign data, Funkcial. Ekvac., 55 (2012), 55-66. https://doi.org/10.1619/fesi.55.55
S. Boulaaras, R.Guefaifia, Existence of positive weak solutions for a class of Kirrchoff elliptic systems with multiple parameters, Math Meth Appl Sci., Volume 41, Issue 13, 5203-5210 https://doi.org/10.1002/mma.5071
S. Boulaaras, R.Guefaifia and S. Kabli: An asymptotic behavior of positive solutions for a new class of elliptic systems involving of (p(x), q(x))-Laplacian systems. Bol. Soc. Mat. Mex. (2017). https://doi.org/10.1007/s40590-017-0184-4
S. Boulaaras, K. Habita and M. Haiour, A posteriori error estimates for the generalized overlapping domain decomposition method for a parabolic variational equation with mixed boundary condition, Bol. Soc. Paran. Mat. v. 38 4 (2020): 111-126. https://doi.org/10.5269/bspm.v38i4.40535
S. Boulaaras, B. C. Bahi and M. Haiour, The maximum norm analysis of a nonmatching grids method for a class of parabolic equation with nonlinear source terms, Bol. Soc. Paran. Mat. 38 4 (2020): 157-174. https://doi.org/10.5269/bspm.v38i4.40272
Y. Bouizm, S. Boulaaras and B. Djebbar, Some existence results for an elliptic equation of Kirchhoff-type with changing sign data and a logarithmic nonlinearity, Math Meth Appl Sci., (2019), https://doi.org/10.1002/mma.5523
Boulaaras, S; Guefaifia, R.; Bouali, T. Existence of positive solutions for a class of quasilinear singular elliptic systems involving Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Indian J. Pure Appl. Math. 2018, 49, 705-715. https://doi.org/10.1007/s13226-018-0296-1
Chipot, M. and Lovat, B., Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619-4627. https://doi.org/10.1016/S0362-546X(97)00169-7
Correa, F. J. S. A. and Figueiredo, G. M., On an elliptic equation of p−Kirchhoff type via variational methods, Bull. Austral. Math. Soc., 74 (2006), 263-277. https://doi.org/10.1017/S000497270003570X
Correa, F. J. S. A. and Figueiredo, G. M., On a p−Kirchhoff equation type via Krasnoselkii's genus, Appl. Math. Lett. , 22 (2009), 819-822. https://doi.org/10.1016/j.aml.2008.06.042
Hai, D. D. and Shivaji, R., An existence result on positive solutions for a class of p−Laplacian systems, Nonlinear Anal., 56 (2004), 1007-1010. https://doi.org/10.1016/j.na.2003.10.024
R. Guefaifia and S. Boulaaras Existence of positive radial solutions for (p(x),q(x))-Laplacian systems Appl. Math. E-Notes, 18(2018), 209-218
R. Guefaifia and S. Boulaaras, Existence of positive solution for a class of (p(x),q(x))-Laplacian systems, Rend. Circ. Mat. Palermo, II. Ser 67 (2018), 93-103 https://doi.org/10.1007/s12215-017-0297-7
Han, X. and Dai, G., On the sub-supersolution method for p (x) −Kirchhoff type equations, J. Inequal. Appl., 2012: 283 (2012) 11pp. https://doi.org/10.1186/1029-242X-2012-283
Medekhel, H.; Boulaaras, S.; Zennir, K.; Allahem, A. Existence of Positive Solutions and Its Asymptotic Behavior of (p(x), q(x))-Laplacian Parabolic System. Symmetry 2019, 11, 332. https://doi.org/10.3390/sym11030332
Kirchhoff , G., Mechanik, Teubner, Leipzig, Germany, 1883.
Ma, T. F., Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 1967-1977. https://doi.org/10.1016/j.na.2005.03.021
Ricceri, B., On an elliptic Kirchhoff -type problem depending on two parameters, J. Global Optim., 46 (2010), 543-549. https://doi.org/10.1007/s10898-009-9438-7
Boulaaras, S.; Draifia, A.; Alnegga, M. Polynomial Decay Rate for Kirchhoff Type in Viscoelasticity with Logarithmic Nonlinearity and Not Necessarily Decreasing Kernel. Symmetry 2019, 11, 226. https://doi.org/10.3390/sym11020226
X. L. Fan and D. Zhao, On the spaces L p(x) (Ω) and W m,p(x) (Ω), J. Math. Anal. Appl., 263 (2001), 424- 446. https://doi.org/10.1006/jmaa.2000.7617
Boulaaras, S.; Allahem, A. Existence of Positive Solutions of Nonlocal p(x)-Kirchhoff Evolutionary Systems via SubSuper Solutions Concept. Symmetry 2019, 11, 253. https://doi.org/10.3390/sym11020253
X. L. Fan and D. Zhao, The quasi-minimizer of integral functionals with m(x) growth conditions, Nonlinear Anal., 39 (2000), 807-816. https://doi.org/10.1016/S0362-546X(98)00239-9
X. L. Fan and D. Zhao, Regularity of minimizers of variational integrals with continuous p(x)−growth conditions, Chinese Ann. Math., 17A (5) (1996), 557-564.
X. Han and G. Dai, On the sub-supersolution method for p(x)−Kirchhoff type equations, Journal of Inequalities and Applications, 2012 (2012): 283. https://doi.org/10.1186/1029-242X-2012-283
G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883.
T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005),1967-1977. https://doi.org/10.1016/j.na.2005.03.021
B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optimization, 46(4) 2010, 543-549. https://doi.org/10.1007/s10898-009-9438-7
M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.
V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR., Izv29, (1987), 33-36. https://doi.org/10.1070/IM1987v029n01ABEH000958
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).