Irregular stable sampling and interpolation in functional normed spaces

  • José Alfonso López Nicolás Universidad de Murcia

Resumen

We define the concepts of stable sampling set and stable interpolation set, uniqueness set and complete interpolation set for a normed space of functions. In addition we will show some relationships between these concepts. The main relationships arise when one wants to reduce an stable sampling set or to extend an stable  interpolation set. We will prove that for Banach spaces verifying certain conditions, the complete interpolation sets are precisely the minimal stable sampling sets and are also the maximal stable interpolation sets. Finally we illustrate these results applying them to Paley-Wiener spaces, where we use a result by B. Matei, Yves Meyer and J. Ortega-Cerd´a based on the celebrated Fefferman theorem.

 

 

 

Descargas

La descarga de datos todavía no está disponible.

Citas

Beurling, A., Interpolation for an interval in R. In The collected Works of Arne Beurling, vol. 2, Harmonic Analysis, Birkhauser, Boston, 1989, pp. 351-365.

Lyubarskii, Yurii I. and Seip, Kristian, Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's Ap condition, Revista Matematica Iberoamericana 13 (2), 1997. https://doi.org/10.4171/RMI/224

Matei, B., Meyer, Y., Ortega-Cerda, J., Stable sampling and Fourier multipliers, Publicacions Matematiques 58 (2) (2014), 341-351. https://doi.org/10.5565/PUBLMAT_58214_17

Olevskii, A., Ulanovskii, A., Functions with Disconnected Spectrum University Lecture Series, First Edition, American Mathematical Society (2016). https://doi.org/10.1090/ulect/065

Plancherel M., Polya G., Fonctions enti'eres et integrales de Fourier multiples (seconde partie), Comment. Math. Helv. 10, 110-163. https://doi.org/10.1007/BF01214286

Publicado
2022-01-24
Sección
Articles

Funding data