Non-extremal martingale with Brownian filtration
Résumé
Let (B_{t})_{t≥0} be the filtration of a Brownian motion (B_{t})_{t≥0} on (Ω,B,P). An example is given of an non-extremal martingale which generates the filtration (B_{t})_{t≥0}. We also discuss a property of pure martingales, we show here that it is a property of a filtration rather than a martingale.
Téléchargements
Références
J. Azema, C. Rainer, and M. Yor. Une propriete des martingales pures. Seminaire de probabilites de Strasbourg, 30:243-254, 1996. https://doi.org/10.1007/BFb0094652
M. T. Barlow, M. Emery, F. B. Knight, S. Song, and M. Yor. Autour d'un theore me de tsirelson sur des filtrations Browniannes et non Browniannes. In Seminaire de Probabilites XXXII, pages 264-305. Springer, 1998. https://doi.org/10.1007/BFb0101763
S. Beghdadi Sakrani. Martingales continues, Filtrations faiblement Browniennes et Mesures signees. PhD thesis, Paris 6, 2000.
S. Beghdadi-Sakrani and M. Emery. On certain probabilities equivalent to coin-tossing, d'apres schachermayer. In Seminaire de Probabilites XXXIII, pages 240-256. Springer, 1999. https://doi.org/10.1007/BFb0096514
C. Dellacherie. Probabilites et potentiel: Tome 5, Processus de Markov (fin): Complements de calcul stochastique, volume 5. Hermann, 2008.
L. Dubins, J. Feldman, M. Smorodinsky, B. Tsirelson, et al. Decreasing sequences of sigma-fields and a measure change for Brownian motion. The Annals of Probability, 24(2):882-904, 1996. https://doi.org/10.1214/aop/1039639367
M. Emery and W. Schachermayer. Brownian filtrations are not stable under equivalent time-changes. Seminaire de probabilites de Strasbourg, 33:267-276, 1999. https://doi.org/10.1007/BFb0096516
F. B. Knight. On invertibility of martingale time changes. In Seminar on Stochastic Processes, 1987, pages 193-221. Springer, 1988. https://doi.org/10.1007/978-1-4684-0550-7_9
D. A. Lane. On the fields of some Brownian martingales. The Annals of Probability, pages 499-508, 1978. https://doi.org/10.1214/aop/1176995534
S. Laurent. On standardness and i-cosiness. In Seminaire de Probabilites XLIII, pages 127-186. Springer, 2011. https://doi.org/10.1007/978-3-642-15217-7_5
L. PETROVIC and D. VALJAREVI C. Statistical causality and martingale representation property with application to stochastic differential equations. Bulletin of the Australian Mathematical Society, 90(2):327-338, 2014. https://doi.org/10.1017/S000497271400029X
D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293. Springer Science & Business Media, 2013.
D. Stroock and M. Yor. On extremal solutions of martingale problems. In Annales scientifiques de l'Ecole Normale Superieure, volume 13, pages 95-164, 1980. https://doi.org/10.24033/asens.1378
B. Tsirelson. Triple points: from non-Brownian filtrations to harmonic measures. Geometric and Functional Analysis, 7(6):1096-1142, 1997. https://doi.org/10.1007/s000390050038
M. Yor. Sur l'etude des martingales continues extremales. Stochastics: An International Journal of Probability and Stochastic Processes, 2(1-4):191-196, 1979. https://doi.org/10.1080/17442507908833125
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).