Solving fractional differential equations by the ultraspherical integration method
Résumé
In this paper, we present a numerical method to solve a linear fractional differential equations. This new investigation is based on ultraspherical integration matrix to approximate the highest order derivatives to the lower order derivatives. By this approximation the problem is reduced to a constrained optimization problem which can be solved by using the penalty quadratic interpolation method. Numerical examples are included to confirm the efficiency and accuracy of the proposed method.
Téléchargements
Références
M. Abd-Elhameed, H. Youssri and H. Doha, New solutions for singular Lane-Emden Equations arising in Astrophysics based on shifted Ultraspherical operational Matrices derivatives, Computational Method for Differential Equations. 3 (2014)171-185.
Q. M. Al-Mdallal, M. A. Hajji and A. S. Abu Omer Fractional-order Legender -collocation method for solving fractional initial value problems, Applied Mathematics and Computation. 321 (2018)74-84. https://doi.org/10.1016/j.amc.2017.10.012
Q. M. Al-Mdallal and M. A. Hajji, The Chebyshev collocation -path following method for solving sixth-order SturmLiouville problems, Applied Mathematics and Computation. 232 (2014) 391-398. https://doi.org/10.1016/j.amc.2014.01.083
Q. M. Al-Mdallal and M. A. Hajji, A convergent algorithm for solving higher-order nonlinear fractional boundary value problems, Fractional Calculus and Applied Analysis. 18(6) (2015) 1423-1440. https://doi.org/10.1515/fca-2015-0082
Q. M. Al-Mdallal and M. I. Syam, An efficient for solving non-linear singularly perturbed two points boundary- value problems of fractional order, Communications in Nonlinear Science and Numerical Simultion. 17(6) (2012) 2299-2308. https://doi.org/10.1016/j.cnsns.2011.10.003
Q. M. Al-Mdallal, Q. N. Syam and M. N. Answar, A collocation-shooting method for solving fractional boundary value problems, Commun Nonlinear Sci. NumerSimol. 15 (2010) 3814-3822. https://doi.org/10.1016/j.cnsns.2010.01.020
L. Blank, Numerical treatment of differential equations of fractional order, Numerical analysis Report 287, Manchester Center for Numerical Computational Mathematics, (1996).
H. Beyer and H. Kempfle, Definition of physically consistent damping laws with fractional derivatives, Zeitschrift for Anqweandte Mathematich and Mechanich. 75 (1995) 623-635. https://doi.org/10.1002/zamm.19950750820
A. Carpinteri and F. Mainardi, Fractals and fractional calculus in continuum mechanics, New York, Springer verlger wien (1997). https://doi.org/10.1007/978-3-7091-2664-6
V. Daftardar-Gejji and H. Jafari, Analysis of a system of nonautonomous fractional equations in volving Caputo derivatives, J. Math. Aval. Appl. 328 (2007) 26-33. https://doi.org/10.1016/j.jmaa.2006.06.007
V. Daftardar-Gejji and H. Jafari, Adomian decompositions a tool for solving a system of fractional differential equations, J. Math. Aval. Appe. 301 (2005) 508-518. https://doi.org/10.1016/j.jmaa.2004.07.039
S. E. El-Gendi, Chebyshev solutions of Differential Integral and Integro-Differential Equations, Computers Journal. 12 (1969) 282-287. https://doi.org/10.1093/comjnl/12.3.282
T. M. El-Gendy and M. S. Salim, Penalty functions with partial quadratic interpolation technique in the constrained optimization problems, Journal of Institute of Math. Computer Science. 3 (1990) 85-90.
H. M. El-Hawary, M. S. Salim and H. S. Hussein, Legendre spectral method for solving integral and integro-differential equations, International Journal of Computer Mathematics. 76 (2000) 1-2. https://doi.org/10.1080/00207160008805021
H. M. El-Hawary, M. S. Salim and H. S. Hussein, An optimal Ultraspherical Approximation of Integrals, International Journal of Computer Mathematics. 76 (2000) 219-237. https://doi.org/10.1080/00207160008805021
M. M. El-kady, H. S. Hussein and A. Mohamed Ibrahim, Ultraspherical spectral in integration method for solving linear integro-differential equations, World Academy of Science Engineering and Technology. 33 (2009) 880-887.
S. Irandoust-Pakchin, S. Abdi-Mazraeh Exact solutions for some of the fractional differential equations by using modification of He's variational iteration method, Mathematical sciences Journal. 5 (2011) 151-160.
M. Lakestani, M. Dehghan and S. Irandoust-Pakchin, The construction of operational matirx of fractional derivatives using B-Spline functions, Communications in Non linear Science and Numerical Simulation. 17 (2012) 1149-1162. https://doi.org/10.1016/j.cnsns.2011.07.018
Liu SK, Liv SD, Special functions, Chinese, Meteorology Press, (2003).
V. E. Lynch, B. A. Carreras, D. Del-Castillo-Negrete, K. M. Ferrera-Mejias and H. R. Hicks Numerical methods for the solution of partial differential equations of fractional order, J. Comput. phys. 192 (2003) 406-421. https://doi.org/10.1016/j.jcp.2003.07.008
F. Mainardi, Fractional calculus some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum Mechanics, New York, springer. (1997) 291-348. https://doi.org/10.1007/978-3-7091-2664-6_7
A. Saadatmandi and M. Dehghan, A new operational Matrix for solving fractional-order differential equations, Computers and Mathematics with Applications, 59 (2010) 1326-1336. https://doi.org/10.1016/j.camwa.2009.07.006
G. Szego, Orthogonal polynomials, American mathematical society, 1976.
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).