Existence of multiple solutions for a nonhomogeneous p-Laplacian elliptic equation with critical Sobolev-Hardy exponent
Resumo
This paper is concerned with the existence of multiple nontrivial solutions for nonhomogeneous p-Laplacain elliptic problems involving the critical Hardy-Sobolev exponent. The method used here is based on the Nehari manifold.
Downloads
Referências
Assuncao, R., Carriao, P., Miyagaki, O. Subcritical perturbations of a singular quasilinear elliptic equation involving the critical Hardy-Sobolev exponent. Nonlinear Anal. 66, 1351-1364 (2007). https://doi.org/10.1016/j.na.2006.01.027
Bouchekif, M., Matallah, A. Multiple positive solutions for elliptic equations involving a concave term and critical Sobolev-Hardy exponent. Appl. Math. Lett. 22, 268-275 (2009). https://doi.org/10.1016/j.aml.2008.03.024
Brezis, H., Lieb, E. A Relation Between Point Convergence of Functions and Convergence of Functionals. Proc. Amer. Math. Soc. 88, 486-490 (1983). https://doi.org/10.1090/S0002-9939-1983-0699419-3
Caffarelli, L., Kohn, R., Nirenberg, L. First order interpolation inequality with weights. Compos. Math. 53, 259-275 (1984).
Ekeland, I. On the variational principle. J. Math. Anal. Appl. 47, 324-354 (1974). https://doi.org/10.1016/0022-247X(74)90025-0
Filippucci, R., Pucci, P., Robert, F. On a p-Laplace equation with multiple critical nonlinearities. J. Math. Pures Appl. 91, 156-177 (2009). https://doi.org/10.1016/j.matpur.2008.09.008
Garcia Azorero, J. P., Peral Alonso, I. Hardy Inequalities and Some Critical Elliptic and Parabolic Problems. J. of Differential Equations. 144, 441-476 (1998). https://doi.org/10.1006/jdeq.1997.3375
Ghoussoub, N., Yuan, C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc. 352, 5703-5743 (2000). https://doi.org/10.1090/S0002-9947-00-02560-5
Kang, D. S. On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms. Nonlinear Anal. 68, 1973-1985 (2008). https://doi.org/10.1016/j.na.2007.01.024
Sang, Y. Guo, S. Solutions for the quasi-linear elliptic problems involving the critical Sobolev exponent. Journal of Inequalities and Applications. (2017). https://doi.org/10.1186/s13660-017-1492-y
Secchi, S., Smets, D., Willem, M. Remarks on a Hardy-Sobolev inequality. C.R. Acad. Sci. Paris. 336, 811-815 (2003). https://doi.org/10.1016/S1631-073X(03)00202-4
Liang, S. H., Zhang, J. H. Multiplicity of solutions for a class of quasilinear elliptic equation involving the critical Sobolev and Hardy exponents. Nonlinear Differ. Equ. Appl. 17, 55-67 (2010). https://doi.org/10.1007/s00030-009-0039-4
Tarantello, G. On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. Henri Poincare 9, 281-304 (1992). https://doi.org/10.1016/S0294-1449(16)30238-4
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).