On a positive solutions for $(p,q)$-Laplacian Steklov problem with two parameters
Resumo
We study the existence and non-existence of positive solutions for $(p,q)$-Laplacian Steklov problem with two parameters. The main result of our research is the construction of a continuous curve in plane, which becomes a threshold between the existence and non-existence of positive solutions.
Downloads
Referências
A. Anane, O. Chakrone, N. Moradi, Regularity of the solutions to a nonlinear boundary problem with inde?nite weight, Bol. Soc. Paran. Mat. V. 29 1 (2011), 17-23. https://doi.org/10.5269/bspm.v29i1.11402
R. Aris, Mathematical Modelling Techniques, Research Notes in Mathematics, Pitman, London, 1978.
V. , A. M. Micheletti, D. Visetti, An eigenvalue problem for a quasilinear elliptic field equation, J. Differential Equations, 184, No.2 (2002), 299-320. https://doi.org/10.1006/jdeq.2001.4155
Andrzej Szulkin and Tobias Weth, The method of Nehari manifold, Handbook of nonconvex analysis and applications, Somerville, MA, 2010, pp. 597-632.
Bobkov, V., and Il?yasov, Y. Maximal existence domains of positive solutions for two-parametric systems of elliptic equations. arXiv preprint arXiv:1406.5275 (2014). https://doi.org/10.1080/17476933.2015.1107905
Bobkov, V., and Tanaka, M. On positive solutions for (p, q)-Laplace equations with two parameters. Calculus of Variations and Partial Differential Equations 54.3 (2015): 3277?3301. DOI:10.1007/s00526-015-0903-5 (Cited on pages 1, 2, 4, 6, 14, 18, and 22). https://doi.org/10.1007/s00526-015-0903-5
N.Benouhiba and Z. Belyacine, On the solutions of (p, q)-Laplacian problem at resonance, Nonlinear Anal. 77 (2013), 74-81. https://doi.org/10.1016/j.na.2012.09.012
P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, 28, Springer Verlag, Berlin-New York, 1979. https://doi.org/10.1007/978-3-642-93111-6
Ilyasov, Y. On positive solutions of indefinite elliptic equations. Comptes Rendus de l?Acad?mie des Sciences-Series I-Mathematics 333, 6 (2001), 533-538. https://doi.org/10.1016/S0764-4442(01)01924-3
Ilyasov, Y. S. Bifurcation calculus by the extended functional method. Functional Analysis and Its Applications 41, 1 (2007), 18-30. https://doi.org/10.1007/s10688-007-0002-2
J. Fernandez Bonder and Julio D. Rossi, A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding, Publ. Mat. 46 (2002), 221-235. https://doi.org/10.5565/PUBLMAT_46102_12
S. A. Marano and N. S. Papageorgiou, Constant-sign and nodal solutions of coercive (p, q)-Laplacian problems, Nonlinear Anal. TMA, 77 (2013), 118-129. https://doi.org/10.1016/j.na.2012.09.007
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian System, Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-1-4757-2061-7
M. Mihailescu, An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Commun. Pure Appl. Anal. 10 (2011), 701-708. https://doi.org/10.3934/cpaa.2011.10.701
D. Motreanu and M. Tanaka, Generalized eigenvalue problems of nonho- mogeneous elliptic operators and their application, Pacific J. Math. 265 (2013), 151-184. https://doi.org/10.2140/pjm.2013.265.151
N. E. Sidiropoulos, Existence of solutions to indefinite quasilinear elliptic problems of (p, q)-Laplacian type, Elect. J. Diff. Equ. 2010 no.162 (2010), 1-23.
M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, Heidelberg, New York, 1996.
M. Tanaka, Generalized eigenvalue problems for (p, q)-Laplace equation with indefinite weight, J. Math. Anal. Appl., 2014, Vol. 419(2), 1181-1192. https://doi.org/10.1016/j.jmaa.2014.05.044
J. L. Vazquez, A strong maximum principle for some quasi-linear elliptic equations, Appl.Math. Optim., 1984, 191-202. https://doi.org/10.1007/BF01449041
H. Yin and Z. Yang, A class of (p, q)-Laplacian type equation with noncaveconvex nonlinearities in bounded domain, J. Math. Anal. Appl. 382 (2011), 843-855. https://doi.org/10.1016/j.jmaa.2011.04.090
A. Zerouali, B. Karim, O. Chakrone and A. Boukhsas, On a positive solution for (p; q)-Laplace equation with Nonlinear Boundary Conditions and indefinite weights, Bol. Soc. Paran. Mat., Vol. 38/4 (2020 ), 219-233. https://doi.org/10.5269/bspm.v38i4.36661
A. Zerouali, B. Karim, O. Chakrone and A. Boukhsas, Resonant Steklov eigenvalue problem involving the (p; q)- Laplacian, Afrika Matematika, Vol.30/1 (2018), pp. 171-179. https://doi.org/10.1007/s13370-018-0634-9
G. Li, G. Zhang, Multiple solutions for the (p, q)-Laplacian problem with critical exponent, Acta Mathematica Scientia, 29B, No.4 (2009), 903-918. https://doi.org/10.1016/S0252-9602(09)60077-1
Zeidler, E. Nonlinear Functional Analysis and its Application III.: Vari- ational Methods and Optimization. SpringerVerlag GmbH, 1985. https://doi.org/10.1007/978-1-4612-5020-3
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).