On a positive solutions for $(p,q)$-Laplacian Steklov problem with two parameters

  • Abdelmajid Boukhsas FSO/OUJDA
  • Abdellah Ahmed Zerouali Centre Pédagogique Régional Fès
  • Omar Chakrone FSO/OUJDA
  • Belhadj Karim Facult´e des Sciences et T´echniques, Errachidia

Resumo

We study the existence and non-existence of positive solutions for $(p,q)$-Laplacian Steklov problem with two parameters. The main result of our research is the construction of a continuous curve in plane, which becomes a threshold between the existence and non-existence of positive solutions.

Downloads

Não há dados estatísticos.

Referências

A. Anane, O. Chakrone, N. Moradi, Regularity of the solutions to a nonlinear boundary problem with inde?nite weight, Bol. Soc. Paran. Mat. V. 29 1 (2011), 17-23. https://doi.org/10.5269/bspm.v29i1.11402

R. Aris, Mathematical Modelling Techniques, Research Notes in Mathematics, Pitman, London, 1978.

V. , A. M. Micheletti, D. Visetti, An eigenvalue problem for a quasilinear elliptic field equation, J. Differential Equations, 184, No.2 (2002), 299-320. https://doi.org/10.1006/jdeq.2001.4155

Andrzej Szulkin and Tobias Weth, The method of Nehari manifold, Handbook of nonconvex analysis and applications, Somerville, MA, 2010, pp. 597-632.

Bobkov, V., and Il?yasov, Y. Maximal existence domains of positive solutions for two-parametric systems of elliptic equations. arXiv preprint arXiv:1406.5275 (2014). https://doi.org/10.1080/17476933.2015.1107905

Bobkov, V., and Tanaka, M. On positive solutions for (p, q)-Laplace equations with two parameters. Calculus of Variations and Partial Differential Equations 54.3 (2015): 3277?3301. DOI:10.1007/s00526-015-0903-5 (Cited on pages 1, 2, 4, 6, 14, 18, and 22). https://doi.org/10.1007/s00526-015-0903-5

N.Benouhiba and Z. Belyacine, On the solutions of (p, q)-Laplacian problem at resonance, Nonlinear Anal. 77 (2013), 74-81. https://doi.org/10.1016/j.na.2012.09.012

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, 28, Springer Verlag, Berlin-New York, 1979. https://doi.org/10.1007/978-3-642-93111-6

Ilyasov, Y. On positive solutions of indefinite elliptic equations. Comptes Rendus de l?Acad?mie des Sciences-Series I-Mathematics 333, 6 (2001), 533-538. https://doi.org/10.1016/S0764-4442(01)01924-3

Ilyasov, Y. S. Bifurcation calculus by the extended functional method. Functional Analysis and Its Applications 41, 1 (2007), 18-30. https://doi.org/10.1007/s10688-007-0002-2

J. Fernandez Bonder and Julio D. Rossi, A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding, Publ. Mat. 46 (2002), 221-235. https://doi.org/10.5565/PUBLMAT_46102_12

S. A. Marano and N. S. Papageorgiou, Constant-sign and nodal solutions of coercive (p, q)-Laplacian problems, Nonlinear Anal. TMA, 77 (2013), 118-129. https://doi.org/10.1016/j.na.2012.09.007

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian System, Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-1-4757-2061-7

M. Mihailescu, An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Commun. Pure Appl. Anal. 10 (2011), 701-708. https://doi.org/10.3934/cpaa.2011.10.701

D. Motreanu and M. Tanaka, Generalized eigenvalue problems of nonho- mogeneous elliptic operators and their application, Pacific J. Math. 265 (2013), 151-184. https://doi.org/10.2140/pjm.2013.265.151

N. E. Sidiropoulos, Existence of solutions to indefinite quasilinear elliptic problems of (p, q)-Laplacian type, Elect. J. Diff. Equ. 2010 no.162 (2010), 1-23.

M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, Heidelberg, New York, 1996.

M. Tanaka, Generalized eigenvalue problems for (p, q)-Laplace equation with indefinite weight, J. Math. Anal. Appl., 2014, Vol. 419(2), 1181-1192. https://doi.org/10.1016/j.jmaa.2014.05.044

J. L. Vazquez, A strong maximum principle for some quasi-linear elliptic equations, Appl.Math. Optim., 1984, 191-202. https://doi.org/10.1007/BF01449041

H. Yin and Z. Yang, A class of (p, q)-Laplacian type equation with noncaveconvex nonlinearities in bounded domain, J. Math. Anal. Appl. 382 (2011), 843-855. https://doi.org/10.1016/j.jmaa.2011.04.090

A. Zerouali, B. Karim, O. Chakrone and A. Boukhsas, On a positive solution for (p; q)-Laplace equation with Nonlinear Boundary Conditions and indefinite weights, Bol. Soc. Paran. Mat., Vol. 38/4 (2020 ), 219-233. https://doi.org/10.5269/bspm.v38i4.36661

A. Zerouali, B. Karim, O. Chakrone and A. Boukhsas, Resonant Steklov eigenvalue problem involving the (p; q)- Laplacian, Afrika Matematika, Vol.30/1 (2018), pp. 171-179. https://doi.org/10.1007/s13370-018-0634-9

G. Li, G. Zhang, Multiple solutions for the (p, q)-Laplacian problem with critical exponent, Acta Mathematica Scientia, 29B, No.4 (2009), 903-918. https://doi.org/10.1016/S0252-9602(09)60077-1

Zeidler, E. Nonlinear Functional Analysis and its Application III.: Vari- ational Methods and Optimization. SpringerVerlag GmbH, 1985. https://doi.org/10.1007/978-1-4612-5020-3

Publicado
2022-01-30
Seção
Artigos