A modified fixed point method for biochemical transport
Résumé
This work is devoted to a modified fixed point method applied to the bio-chemical transport equation. To have a good accuracy for the solution we treat, we apply an implicit scheme to this equation and use a modified fixed point technique to linearize the problem of transport equation with a generalized nonlinear reaction and diffusion equation. Next, we apply this methods in particular to the the dynamical system of a bio-chemical process. Eventually, we accelerate these algorithms by the optimized domain decomposition methods.
Several test-cases of analytical problems illustrate this approach and show the efficiency of the proposed
new method.
Téléchargements
Références
M. R. Amattouch, H. Belhadj, Combined Optimized Domain Decomposition Method and a Modified Fixed Point Method for Non Linear Diffusion Equation, Applied Mathematics and Information Sciences, 11, No. 1, 201-207 (2017). https://doi.org/10.18576/amis/110125
M. R. Amattouch, N. Nagid, H. Belhadj, Optimized Domain Decomposition Method for Non Linear Reaction Advection Diffusion Equation, European Scientific Journal , Vol 12, No 26 (2016). https://doi.org/10.19044/esj.2016.v12n27p63
M. R. Amattouch, N. Nagid, H. Belhadj, a new splitting method for the Navier Stokes equation , Journal of space exploration, Vol 2, 24 august 2017.
M. R. Amattouch, N. Nagid, H. Belhadj, A modified fixed point method for The Perona Malik equation, Journal of Mathematics and System Science 7, 175-185, september 2017 https://doi.org/10.17265/2159-5291/2017.07.001
Fisher R. A, The wave of advance of adventage genes.,Ann. Eugenics, Vol. 7, pp. 353-369, 1937 https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
Murray J. D, Mathematical Biology., Berlin: Springer. 1993. https://doi.org/10.1007/978-3-662-08542-4
T. Hillen , K. J. Painter , user's guide to PDE models for chemotaxis,Journal of Math. Biol.(2009) 58,183-217 https://doi.org/10.1007/s00285-008-0201-3
A. M. Turing, he chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London , B 737, 1953, pp.37-72. https://doi.org/10.1098/rstb.1952.0012
R. FitzHugh, pulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961) 445-466. https://doi.org/10.1016/S0006-3495(61)86902-6
Chang, Raymond. Physical Chemistry for the Biosciences. Sansalito, CA: University Science, 2005. Page 363-371.
A. V. Hill, The possible effects of the aggregation of the molecules of homoglobin on its dissociation curves, J. Physiol., 40,iv-vii, 1910
Goldbeter A, Koshland D E, An Amplified Sensitivity Arising from Covalent Modification in Biological-Systems., Proc Na tl Acad Sci USA 78: 6840-6844, 1981 https://doi.org/10.1073/pnas.78.11.6840
Tyson J J, Modeling the cell division cycle: cdc2 and cyclin interactions,Proc. Natl. Acad. Sci. U.S.A. 1991;88:7328-7332. https://doi.org/10.1073/pnas.88.16.7328
Y Fang, G T Yeh, W D Burgos, A general paradigm to model reaction?based biogeochemical processes in batch systemsWater Resources Research, 2003 https://doi.org/10.1029/2002WR001694
Benzekry, S., Modeling and mathematical analysis of anti-cancer therapies for metastatic cancers,PhD thesis University of Aix-Marseille (2011).
J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE 50 (1962) 2061-2070. https://doi.org/10.1109/JRPROC.1962.288235
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).