Nonexistence of solutions of higher-order nonlinear non-Gauge Schrödinger equation

  • Ahmed Alsaedi King Abdulaziz University
  • Bashir Ahmad King Abdulaziz University
  • Mokhtar Kirane Université de La Rochelle http://orcid.org/0000-0003-2221-9778
  • Abderrazak Nabti Universit´e Cheikh El Arbi T´ebessi

Resumo

A nonexistence result is proved of the space higher-order nonlinear Schrodinger equation
where m > 1, n > 1 and p > n. Our method of proof rests on a judicious choice of the test function in the weak formulation of the equation. Then, we obtain an upper bound of the life span of solutions. Furthermore, the necessary conditions for the existence of local or global solutions are provided.
Next, we extend our results to the 2 × 2 – system.

Downloads

Não há dados estatísticos.

Referências

Jleli, M., Samet, B., On the critical exponent for nonlinear Schrdinger equations without gauge invariance in exterior domains, J. Math. Anal. Appl. 469, 188-201, (2019). https://doi.org/10.1016/j.jmaa.2018.09.009

Begout, P., Necessary conditions and sufficient conditions for global existence in the nonlinear Schr¨odinger equation, Adv. Math. Sci. Appl. 12, 817-827, (2002).

Biswas, A., Khalique, C. M., Stationay solutions for nonlinear dispersive Schrodinger's equation, Nonlinear Dyn. 63, 623-626, (2011). https://doi.org/10.1007/s11071-010-9824-1

Biswas, A., Khalique, C. M., Stationary Solutions for the Nonlinear Dispersive Schrodinger Equation with Generalized Evolution, Chinese J. Phys. 51, 103-110, (2013).

Cazenave, T., Semilinear Schr¨odinger equations, Courant lecture Notes in Mathematics 10, American Mathematical Society (2003). https://doi.org/10.1090/cln/010

Chaves, M.. Galaktionov, V., Regional blow-up for a higher-order semilinear parabolic equation, Europ J. Appl. Math. 12, 601- 623, (2001). https://doi.org/10.1017/S0956792501004685

Galaktionov, V. A., Mitidieri, E. L., Pohozaev S. I, Blow-up for Higher-order parabolic, Hyperbolic, Dispersion and Schrodinger Equations, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 568 pp, (2014), https://doi.org/10.1201/b17415

Galaktionov, V., Pohozaev, S. I., Existence and blow-up for higher-order semilinear parabolic equation: majorizing order perserving operator, Indiana Univ. Math. J. 51, 2321-1338, (2002). https://doi.org/10.1512/iumj.2002.51.2131

Ikeda, M., Lifespan of solutions for the nonlinear Schrodinger equation without gauge invariance, arXiv:1211.6928v2 [math.AP] (2012).

Ikeda, M., Wakasugi, Y., Small data blow-up of L2 -solution for the nonlinear Schr¨odinger equation without gauge invariance, Differential Integral Equations 26, 1275-1285, (2013).

Lange, H., Peppenperg, M., Teismann, H., Nash-Moser methods for the solutions of quasilinear Schr¨odinger equations, Comm. Part. Differ. Equat., 24, 1399-1418, (1999). https://doi.org/10.1080/03605309908821469

Majda, A. J., McLaughlin, D. W., Tabak, E. G., A One-Dimensional Model for Dispersive Wave Turbulence, J. Nonlinear Sci. 6, 9-44, (1997). https://doi.org/10.1007/BF02679124

Zakharov, V., Dias, F., Pushkarev, A., One-dimensional wave turbulence, Physics Reports 398, 1-65, (2004). https://doi.org/10.1016/j.physrep.2004.04.002

Nobre, F. D., Rego-Monteiro, M. A., Tsallis, C., Nonlinear Relativistic and Quantum Equations with a Common Type of Solution, Physical Review Letters 106(14):140601, (2011). https://doi.org/10.1103/PhysRevLett.106.140601

Pohozaev, S. I., Nonexistence of global solutions of nonlinear evolution equations, Differ. Equ., 49, 599-606, (2013). https://doi.org/10.1134/S001226611305008X

Sulem, C., Sulem, P.L., The Nonlinear Schrodinger Equation: Self-Foscusing and Wave Collapse, Applied Mathematics Sciences, Series in Mathematical Sciences, Volume 139, Springer-Verlag, (1999).

Ogawa, T., Blow-up of H1 Solution for the Nonlinear Schrodinger Equation, J. Differential Equations 92, 317-330, (1991). https://doi.org/10.1016/0022-0396(91)90052-B

Yan, Z., Envelope compactons and solitary patterns, Phys. Lett. A 355, 212-215, (2006). https://doi.org/10.1016/j.physleta.2006.02.032

Z. Yan, Envelope compact and solitary pattern structures for the GNLS(m,n,p,q) equations, Phys. Lett. A 357, 196-203, (2006). https://doi.org/10.1016/j.physleta.2006.04.032

Publicado
2022-01-26
Seção
Artigos

Funding data