Coupled fixed point and best proximity point results involving simulation functions
Resumen
The purpose of this paper is to prove coupled fixed point theorems using simulation functions that extend the results of Kojasteh et al . As an application we prove a coupled best proximity points using simulation functions.
Descargas
Citas
Khojasteh, F, Shukla, S, and Radenovic, S., "A new approach to the study of fixed point theorems via simulation functions ". Filomat, vol. 29, no. 6, pp. 1189-1194, 2015.
Karapinar, E.,Fixed Points Results via Simulation Functions. Filomat, 2016, 30, 2343-2350.
Tchier, F, Vetro, C, and Vetro, F., Best approximation and variational inequality problems involving a simulation function. Fixed Point Theory Appl. (2016) 2016:26.
Samet, B., Best proximity point results in partially ordered metric spaces via simulation functions. Fixed Point Theory Appl. (2015) 2015:232.
Chanda, A, Dey, LK, Radenovic, S,Simulation functions: A survey of recent results. RACSAM,
Kostic, A, Rakocevic, V, Radenovic, S.,Best proximity points involving simulation functions with w0 distance. RACSAM,
Radenovic, S, Vetro, F, Vujakovic, J., An alternative and easy approach to fixed point results via simulation functions. Demonstratio Mathematica 2017; 50:224-231.
Radenovic, S, Chandok, S., Simulation type functions and coincidence point results. Filomat. 32:1 (2018), 141-147.
Xiao-Lan Liu, Arslan Hojat Ansari, Sumit Chandok, Stojan Radenovic., On some results in metric spaces using auxiliary simulation functions via new functions. J. Comput. Anal. Appl. Vol. 24, No. 6, 2018, Copyright 2018 Eudoxus Press, LLC.
Chandok, S, Chanda, A, Dey, LK, Pavlovic, M, Radenovic, S., Simulations functions and Geraghty type results. Boletin da Sociedade Paranaense de Matematica 2018.
Srinivasan, PS, Veeramani, P.,On existence of equilibrium pair for constrained generalized games. Fixed Point Theory Appl. 1, 21-29 (2004).
Eldred, A A, Veeramani, P.,Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001-1006 (2006).
Al-Thagafi, M A, Shahzad, N.,Convergence and existence results for best proximity points. Nonlinear Anal. 70, 3665-3671 (2009).
Sadiq Basha, S, Veeramani, P.,Best proximity pair theorems for multifunctions with open fibres.J. Approx. Theory 103, 119-129 (2000).
Sankar Raj, V.,A best proximity point theorem for weakly contractive non-self-mappings.Nonlinear Anal. 74, 4804-4808 (2011).
Kirk, W A, Reich, S, Veeramani, P.,Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24, 851-862 (2003).
Sadiq Basha, S.,Discrete optimization in partially ordered sets. J. Glob. Optim. (2011). doi:10.1007/s10898-011-9774-2.
Pragadeeswarar, V, Marudai, M.,Best proximity points: approximation and optimization in partially ordered metric spaces. Optim. Lett. (2012).
Abkar, A, Gabeleh, M.,Generalized cyclic contractions in partially ordered metric spaces. Optim. Lett. (2011). doi:10.1007/s11590-011-0379-y
Bhaskar, TG, Lakshmikantham, V.,Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65, 1379-1393 (2006).
Lakshmikantham, V, Ciric, L., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70(12), 4341-4349 (2009).
Luong, B V, Thuan, N X.,Coupled fixed point theorems for mixed monotone mappings and an application to integral equations.Comput. Math. Appl. 62(11), 4238-4248 (2011).
Shatanawi, W.,Partially ordered metric spaces and coupled fixed point results. Comput. Math. Appl. 60, 2508-2515 (2010).
Hussain, N, Abbas, M, Azam, A, Ahmad, J.,Coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl. 2014, 2014: 62.
Sintunavarat, W, Kumam, P.,Coupled best proximity point theorem in metric spaces. Fixed Point Theory Appl. 2012, 2012: 93.
Shatanawi, W, Pitea, A.,Best proximity point and best proximity coupled point in a complete metric space with (P)-property. Filomat. 29 (1), 63-74 (2015).
Kumam, P, Pragadeeswarar, V, Marudai, M, Sitthithakerngkiet, K.,Coupled best proximity points in ordered metric spaces.Fixed Point Theory Appl. 2014, Article ID 2014:107.
Abkar, A, Ghods, S, Azizi, A.,Coupled best proximity point theorems for proximally g-Meir-Keeler type mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2015, Article ID 2015:107.
Derechos de autor 2022 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).
Funding data
-
Council of Scientific and Industrial Research, India
Grant numbers 09/475(0202)/2018-EMR-I -
King Saud University
Grant numbers RSP-2020/158