Solution of an integro-differential nonlinear equation of Volterra arising of earthquake model
Resumen
In this paper, we study a new type of modeling of an Earthquake phenomenon, a mechanical model of the earthquake process in one-dimension using usual mathematical functions, the latter leads to the study of nonlinear integro-differential equation of Volterra. The existence and the uniqueness of the solution are proved. Using Nystrom method is builded to approximate the solution. The numerical tests show the effectiveness of this type of modeling.
Descargas
Citas
X. Le Pichon, J. Francheteau and J. Bonnin , Plate Tectonics (Elsevier Scientific Publishing Company Amsterdam, London, New York, 1973)
G. D. Williams, Tectonics and seismic sequence stratigraphy: an introduction, Tectonics and Seismic Sequence Stratigraphy. Geological Society Special Publication No. 71 (1993) 1-13. https://doi.org/10.1144/GSL.SP.1993.071.01.01
H. Guebbai, M. Z. Aissaoui, I. Debbar and B. Khalla, Analytical and numerical study for an integro-differential nonlinear Volterra equation, Applied Mathematics and Computation 229(2014) 367-373. https://doi.org/10.1016/j.amc.2013.12.046
S. Segni, M. Ghiat and H. Guebbai, New approximation method for Volterra nonlinear integro-diferential equation, Asian-European Journal of Mathematics, Vol. 12, No. 1, 1950016 Doi:10.1142/S1793557119500165 (2019) https://doi.org/10.1142/S1793557119500165
M. Ghiat and H. Guebbai, Annalytical and numerical study for an integro-differential nonlinear Volterra equation with weakly singular kernel, Com. Appl. Math, (2018) https://doi.org/10.1007/s40314-018-0597-3
P. Linz, Analytical and numerical methods for Volterra equations (SIAM Studies in Applied Mathematics, Philadelphia, 1985). https://doi.org/10.1137/1.9781611970852
A. Atkinson and W. Han , Theoretical Numerical Analysis: A Functional Analysis Framework ( Springer-Verlag, New York, 2001). https://doi.org/10.1007/978-0-387-21526-6
Tokui Sato, Sur L'equation Integrale non Lineaire de Volterra, Compositio Mathematica. tome 11 (1953) 271-290.
H. Brunner, The numerical treatment of Volterra integro-differential equations with unbounded delay, J. Comput. Appl. Math. 28 (1989) 5-23. https://doi.org/10.1016/0377-0427(89)90318-X
R. K. Nagle, E. B. Saff and A. D. Snider , Fundamentals of Differential Equations (Pearson international edition, 2008)
Derechos de autor 2022 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).