New estimates for the Fourier transform in the space L2(Rn)

  • elhamma mohamed Universit´e Hassan II
  • R. Daher Université Hassan II
  • N. Djellab Université Hassan II
  • Ch. Khalil Universit´e Hassan II

Resumo

In this paper, we prove new estimates are presented for the integral \int_{|t|>N}|\widehat(f)(t)|^{2}dt
, where \widehat(f) stands for the Fourier transform of f and N ≥ 1, in the space L2(Rn) characterized by the generalized modulus of continuity of the kth order constructed with the help of the generalized spherical mean operator. 

Downloads

Não há dados estatísticos.

Referências

V. A. Abilov and F. V. Abilova, Approximation of Functions by Fourier-Bessel Sums. Izv. Vyssh. Uchebn. Zaved. Mat., No. 8, 3-9, (2001).

V. A. Abilov, F. V. Abilova and M. K. Kerimov, Some New Estimates of the Fourier Transform in the Space L2(R), Comput. Math. Math. Physi, Vol. 53, No. 9, pp. 1231-1238, (2013). https://doi.org/10.1134/S0965542513090029

W. O. Bray and M. A. Pinsky, Growth properties of Fourier transforms via moduli of continuity, Journal of Functional Analysis, 255, 2265-2285, (2008). https://doi.org/10.1016/j.jfa.2008.06.017

R. Daher and M. El Hamma, On Estimates for the Fourier transform in the Space L 2 (Rn), C. R. Acad. Sci. Paris, Ser. I 352, 235-240, (2014).

S. M. Nikol'skii, Approximation of Functions of Several Variables and Embedding Theorems, (Nauka, Moscow)[in Russian], (1996).

A. F. Timan, Theory of Approximation of Functions of a Real Variable, (Macmillan, New York, 1963). https://doi.org/10.1016/B978-0-08-009929-3.50008-7

Publicado
2022-02-07
Seção
Proceedings