New estimates for the Fourier transform in the space L2(Rn)
Resumo
In this paper, we prove new estimates are presented for the integral \int_{|t|>N}|\widehat(f)(t)|^{2}dt
, where \widehat(f) stands for the Fourier transform of f and N ≥ 1, in the space L2(Rn) characterized by the generalized modulus of continuity of the kth order constructed with the help of the generalized spherical mean operator.
Downloads
Referências
V. A. Abilov and F. V. Abilova, Approximation of Functions by Fourier-Bessel Sums. Izv. Vyssh. Uchebn. Zaved. Mat., No. 8, 3-9, (2001).
V. A. Abilov, F. V. Abilova and M. K. Kerimov, Some New Estimates of the Fourier Transform in the Space L2(R), Comput. Math. Math. Physi, Vol. 53, No. 9, pp. 1231-1238, (2013). https://doi.org/10.1134/S0965542513090029
W. O. Bray and M. A. Pinsky, Growth properties of Fourier transforms via moduli of continuity, Journal of Functional Analysis, 255, 2265-2285, (2008). https://doi.org/10.1016/j.jfa.2008.06.017
R. Daher and M. El Hamma, On Estimates for the Fourier transform in the Space L 2 (Rn), C. R. Acad. Sci. Paris, Ser. I 352, 235-240, (2014).
S. M. Nikol'skii, Approximation of Functions of Several Variables and Embedding Theorems, (Nauka, Moscow)[in Russian], (1996).
A. F. Timan, Theory of Approximation of Functions of a Real Variable, (Macmillan, New York, 1963). https://doi.org/10.1016/B978-0-08-009929-3.50008-7
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).