Some modified types of pitchfork domination and it's inverse

Resumo

Let G be a finite, simple graph, without isolated vertices. For any non-negative integers x and y, a set D ⊆ V is a ”pitchfork dominating set pds”, when every vertex in D, dominates at most y and at least x vertices of V − D. A subset D−1 of V − D is an inverse pds if it is a pitchfork set. The pitchfork domination number of G, γpf (G), is the number of elements of a smallest pds. The ”inverse pitchfork domination number” of G, γ −1 pf (G), is the number of elements of a smallest inverse pds. In this paper, some modified pitchfork dominations and its inverse dominations are introduced when x = 1 and y = 2. Several bounds and properties are given and proved. Then, these modified dominations are applied on some standard graphs such as: path, cycle, wheel, complete, complete bipartite graph and their complements.

Downloads

Não há dados estatísticos.

Biografia do Autor

Manal Naji Al-harere, University of Technology, Baghdad

Department of Applied Sciences

Referências

M. A. Abdlhusein and M. N. Al-harere, New parameter of inverse domination in graphs, Indian Journal of Pure and Applied Mathematics, accepted to appear (2020). https://doi.org/10.1007/s13226-021-00082-z

M. A. Abdlhusein and M. N. Al-harere, Pitchfork domination and it's inverse for corona and join operations in graphs, Proceedings of International Mathematical Sciences, I, 2, 51-55, (2019).

M. A. Abdlhusein and M. N. Al-Harere, Doubly connected pitchfork domination and its inverse in graphs, TWMS J. App. Eng. Math., (accepted to appear) (2020). https://doi.org/10.1142/S1793830921500385

M. N. Al-harere and M. A. Abdlhusein, Pitchfork domination in graphs, Discrete Mathematics, Algorthem and Applications, 12, 2, 2050025, (2020). https://doi.org/10.1142/S1793830920500251

M. N. Al-harere and A. T. Breesam, Variant types of domination in spinner graph, Al-Nahrain Journal, 2, 127-133, (2019). https://doi.org/10.22401/ANJS.00.2.18

M. N. Al-harere and A. T. Breesam, Further results on bi-domination in graphs, AIP Conference Proceedings, 2096, 1, 020013-020013-9p, (2019). https://doi.org/10.1063/1.5097810

M. N. Al-harere and P. A. Khuda Bakhash, Tadpole domination in graphs, Baghdad Science Journal, 15, 4, 466-471, (2018). https://doi.org/10.21123/bsj.15.4.466-471

M. Chellali, T. W. Haynes, S. T. Hedetniemi and A. M. Rae, [1,2]-Set in graphs, Discrete Applied Mathematic. 161, 18, 2885- 2893, (2013). https://doi.org/10.1016/j.dam.2013.06.012

A. Das, R. C. Laskar and N. J. Rad, On α-domination in graphs, Graphs and Combinatorics, 34, 1, 193-205, (2018). https://doi.org/10.1007/s00373-017-1869-1

F. Harary, Graph Theory, Addison-Wesley, Reading Mass, (1969). https://doi.org/10.21236/AD0705364

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, (1998).

T. W. Haynes, S. T. Hedetniemi and P. J. Slater Domination in Graphs -Advanced Topics, Marcel Dekker Inc., (1998).

S. T. Hedetneimi and R. Laskar (Eds.), Topics in Domination in Graphs, Discrete Math., 86, (1990). https://doi.org/10.1016/0012-365X(90)90365-O

G. Mahadevan, V. G. Bhagavathi Ammal and K. Renuka, Restrained nonsplit−[1, 2] domination number of graphs-I, International Conference on Applied and Computational Mathematics, IOP Conf. Series: Journal of Physics: Conf. Series 1139, 012052, (2018). https://doi.org/10.1088/1742-6596/1139/1/012052

C. Natarajan, S. K. Ayyaswamy and G. Sathiamoorthy, A note on hop domination number of some special families of graphs, International Journal of Pure and Applied Mathematics, 119, 12, 14165-14171, (2018).

A. A. Omran and H. H. Oda, Hn domination in graphs, Baghdad Science Journal, 16, 1, 242-247, (2019). https://doi.org/10.21123/bsj.16.1.(suppl.).0242

A. A.Omran and Y. Rajihy, Some properties of Frame domination in graphs, Journal of Engineering and Applied Sciences, 12, 8882-8885, (2017).

O. Ore, Theory of Graphs, American Mathematical Society, Provedence, R.I., (1962).

Publicado
2022-02-05
Seção
Proceedings