On generalizations of graded multiplication modules
Résumé
Let $G$ be a group with identity $e$, $R$ be a $G$-graded ring with unity $1$ and $M$ be a $G$-graded $R$-module. In this article, we introduce the concept of graded quasi multiplication modules, where graded $M$ is said to be graded quasi multiplication if for every graded weakly prime $R$-submodule $N$ of $M$, $N=IM$ for some graded ideal $I$ of $R$. Also, we introduce the concept of graded absorbing multiplication modules; $M$ is said to be graded absorbing multiplication if $M$ has no graded $2$-absorbing $R$-submodules or for every graded $2$-absorbing $R$-submodule $N$ of $M$, $N=IM$ for some graded ideal $I$ of $R$. We prove many results concerning graded weakly prime submodules and graded $2$-absorbing submodules that will be useful in providing several properties of the two classes of graded quasi multiplication modules and graded absorbing multiplication modules.
Téléchargements
Références
R. Abu-Dawwas, Multiplication Components of graded modules, Italian Journal of Pure and Applied Mathematics, 35 (2015), 389-392.
R. Abu-Dawwas, Graded semiprime multiplication modules, Accepted in Boletim Sociedade Paranaense de Matematica.
R. Abu-Dawwas, K. Al-Zoubi, M. Bataineh, Prime submodules of graded modules, Proyecciones Journal of Mathematics, 31 (4) (2012), 355-361. https://doi.org/10.4067/S0716-09172012000400004
R. Abu-Dawwas, M. Refai, Further results on graded prime submodules, International Journal of Algebra, 4 (28)(2010), 1413-1419.
R. Abu-Dawwas, M. Refai, Some remarks on graded weak multiplication modules, Journal of Contemporary Mathematical Sciences, 6 (14) (2011), 681-686.
R. Abu-Dawwas, M. Refai, Some remarks on Re-multiplication modules over first strongly graded rings, East-West Journal of Mathematics, 13 (1) (2011), 57-61.
K. Al-Zoubi, R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, Journal of Mathematical Sciences: Advances and Applications, 28 (2014), 45-60.
K. Al-Zoubi, R. Abu-Dawwas and S. C¸ eken, On graded 2-absorbing and graded weakly 2-absorbing ideals, Hacettepe Journal of Mathematics and Statistics, 48 (3) (2019), 724-731. https://doi.org/10.15672/HJMS.2018.543
K. Al-Zoubi, F. Qarqaz, An intersection condition for graded prime ideals, Bollettino dell'Unione Matematica Italiana, (2017). https://doi.org/10.1007/s40574-017-0148-7
S. E. Atani, On graded prime submodules, Chiang Mai Journal of Science, 33 (1)(2006), 3-7.
S. E. Atani, On graded weakly prime submodules, International Mathematical Forum, 1 (2) (2006), 61-66. https://doi.org/10.12988/imf.2006.06007
J. Escoriza, B. Torrecillas, Multiplication objects in commutative Grothendieck category, Communications in Algebra, 26 (1998), 1867-1883. https://doi.org/10.1080/00927879808826244
F. Farzalipour, P. Ghiasvand, On the union of graded prime submodules, Thai Journal of Mathematics, 9 (1) (2011), 49-55. https://doi.org/10.5402/2011/939687
F. Farzalipour, P. Ghiasvand, On graded weak multiplication modules, Tamkang Journal of Mathematics, 43 (2) (2012), 171-177. https://doi.org/10.5556/j.tkjm.43.2012.712
F. Farzalipour, P. Ghiasvand, On graded semiprime submodules, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 6 (8)(2012), 1169-1172.
M. Hamoda, A. E. Ashour, On graded n-ansorbing submodules, Le Matematiche, doi:10.4418/2015.70.2.16 (2015).
K. Khaksari, F. R. Jahromi, Multiplication graded modules, International Journal of Algebra, 7 (1) (2013), 17-24. https://doi.org/10.12988/ija.2013.13003
S. C. Lee, R. Varmazyar, Semiprime submodules of graded multiplication modules, Journal of Korean Mathematical Society, 49 (2) (2012), 435-447. https://doi.org/10.4134/JKMS.2012.49.2.435
C. Nastasescu, V. F. Oystaeyen, Methods of Graded Rings, LNM 1836, Berlin-Heidelberg: Springer-Verlag (2004). https://doi.org/10.1007/b94904
K. H. Oral, U. Tekir and A. G. Agargun, On graded prime and primary submodules, Turkish Journal of Mathematics, 35 (2) (2011), 159-167.
R. N. Uregen, U. Tekir, K. P. Shum and S. Koc, On Graded 2-Absorbing Quasi Pr ¨ imary Ideals, Southeast Asian Bulletin of Mathematics, 43 (4) (2019), 601-613.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).