Radial positive solutions for (p(x),q(x))-Laplacian systems
Resumen
In this paper, we study the existence of radial positive solutions for nonvariational elliptic systems involving the p(x)-Laplacian operator, we show the existence of solutions using Leray-Schauder topological degree theory, sustained by Gidas-Spruck Blow-up technique.
Descargas
Citas
Garcia-Huidobro, M., Guerra, I., Manasevich, R.: Existence of positive radial solutions for a weakly coupled system via Blow up, Abstract Appl. Anal. 3 , 105-131, (1998). https://doi.org/10.1155/S1085337598000463
Garcia-Huidobro, M., Manasevich, R.,Schmitt, K.; Some bifurcation results for a class of p-Laplacian like operators, Differential and Integral Equations 10, 51-66, (1997). https://doi.org/10.57262/die/1367846883
Garcia-Huidobro, M., Manasevich, R., Ubilla, P.; Existence of positive solutions for some Dirichlet problems with an asymptotically homogeneous operator, Electron. J. Diff. Equ.10, 1-22, (1995).
Gidas, B., Spruck, J.; A priori Bounds for Positive Solutions of Nonlinear Elliptic Equations, Comm. in PDE, 6(8), 883-901, (1981). https://doi.org/10.1080/03605308108820196
Clement, Ph., Manasevich, R., Mitidieri, E., Positive solutions for a quasilinear system via Blow up, Comm. Partial Differential Equations 18 (12), 2071-2106, (1993). https://doi.org/10.1080/00927879308824124
Djellit, A., Moussaoui, M., Tas, S., Existence of radial positive solutions vanishing at infinity for asymptotically homogeneous systems, Electronic J. Diff. Eqns. 54, 1-10, (2010).
Djellit, A., Tas, S.; On some nonlinear elliptic systems, Nonlinear Analysis, 59, 695-706, (2004). https://doi.org/10.1016/S0362-546X(04)00279-2
do O, J. M. B., Solutions to perturbed eigenvalue problems of the p−Laplacian in RN , Eur. J. Differential Equations 11, 1-15, (1997).
Marcos do O, J., Lorca S., Ubilla P.: ' Three positive solutions for elliptic equations in a ball. Appl. Math. Lett. 18, 1163-1169, (2005). https://doi.org/10.1016/j.aml.2004.12.001
Souto, M. A. S.: A priori estimates and existence of positive solutions of nonlinear cooperative elliptic systems. Diff Int. Equ. 8(5), 1245-1258, (1995). https://doi.org/10.57262/die/1369056053
Yu, L. S., Nonlinear p-Laplacian problems on unbounded domains, Proc. Amer. Math. Soc. 115 (4), 1037-1045, (1992). https://doi.org/10.1090/S0002-9939-1992-1162957-9
Wei, L., Feng, Z.: Existence and nonexistence of solutions for quasilinear elliptic systems. Dyn. PDE. 10(1), 25-42, (2013). https://doi.org/10.4310/DPDE.2013.v10.n1.a2
Ahammou, A., Iskafi, K.: Singular radial positive solutions for nonlinear elliptic systems. Adv. Dyn. Syst. Appl. 4(1), 1-17, (2009).
Derechos de autor 2022 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).