Hausdorff measure of noncompactness of matrix mappings on certain difference sequence spaces

  • Fadime Gökçe Pamukkale University

Abstract

The well-known difference sequence spaces were introduced by Kızmaz [17] in 1981 and have been generalized by many authors uptill now. These spaces were fi rst time extended by Sarıgöl [31] to the sequence spaces$l_{\infty }(\Delta _{q}),$ $c(\Delta _{q})$ or $c_{0}(\Delta _{q})$.  The aim of this paper is to establish some identities or estimates for the operator norms and the Hausdorff measures of noncompactness of certain matrix operators on the extended spaces and also to characterize some classes of compact operators by using the Hausdorff measure of noncompactness.

Downloads

Download data is not yet available.

References

Altay, B., Basar, F., The matrix domain and the fine spectrum of the difference operator ∆ on the sequence space lp, (0 < p < 1). Commun. Math. Anal 2(2), 1-11, (2007).

Basar, F., Altay, B., On the space of sequences of p-bounded variation and related matrix mappings. Ukr. Math. J. 55(1), 136-147, (2003). https://doi.org/10.1023/A:1025080820961 DOI: https://doi.org/10.1023/A:1025080820961

Djolovic, I., Malkowsky, E., Matrix transformations and compact operators on some new mth-order difference sequences, Appl. Math. Comput. 198 (2), 700-714, (2008). https://doi.org/10.1016/j.amc.2007.09.008 DOI: https://doi.org/10.1016/j.amc.2007.09.008

Goldenstein, L. S., Gohberg, I.T., Markus, A.S., Investigations of some properties of bounded linear operators with their q-norms. Uchen. Zap. Kishinev. Gos. Univ. 29, 29-36, (1957).

Gokce, F., Sarıgol, M. A.,On Absolute Euler spaces and Related Matrix Operators, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 90(5), 769-775, (2020). https://doi.org/10.1007/s40010-019-00616-5 DOI: https://doi.org/10.1007/s40010-019-00616-5

Gokce, F., Sarıgol, M. A., Generalization of the Absolute Ces'aro Space and Some Matrix Transformations, Numer. Funct. Anal. Optim. 40 (9), 1039-1052, (2019). https://doi.org/10.1080/01630563.2019.1596130 DOI: https://doi.org/10.1080/01630563.2019.1596130

Gokce, F., Sarıgol, M. A., Extension of Maddox's space l(µ) with N¨orlund means, Asian-Eur. J. Math. Asian-European J. Math. 12(6), 1-12, (2019). https://doi.org/10.1142/S1793557120400057 DOI: https://doi.org/10.1142/S1793557120400057

Gokce, F., Sarıgol, M. A., A new series space N θ p (µ) and matrix operators with applications, Kuwait J. Sci. 45 (4), 1-8, (2018).

Gokce, F., Sarıgol, M. A., Generalization of the space l(p) derived by absolute Euler summability and matrix operators, J. Inequal. Appl. 2018:133, (2018). https://doi.org/10.1186/s13660-018-1724-9 DOI: https://doi.org/10.1186/s13660-018-1724-9

Gulec, G. C.H., Sarıgol, M. A., On absolute N¨orlund spaces and matrix operators, Acta Math. Sinica New Series, 34 (5), 812-826, (2018). https://doi.org/10.1007/s10114-017-7190-3 DOI: https://doi.org/10.1007/s10114-017-7190-3

Gulec, G. C. H., Sarıgol, M. A., Absolute Ces'aro series spaces and matrix operators, Acta Appl. Math. 154(1), 153-165, (2018). https://doi.org/10.1007/s10440-017-0138-x DOI: https://doi.org/10.1007/s10440-017-0138-x

Gulec, G. C. H., Sarıgol, M. A., Compact and matrix operators on the space |C−1|k , J. Comput. Anal. Appl. 25(6), 1014-1024, (2018).

Jarrah, A. M., Malkowsky, E., Ordinary, absolute and strong summability and matrix transformations, Filomat 17, 59-78, (2003). https://doi.org/10.2298/FIL0317059J DOI: https://doi.org/10.2298/FIL0317059J

Kara, E. E., Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl. 2013(1) 38, (2013). https://doi.org/10.1186/1029-242X-2013-38

Kirisci, M., Basar, F., Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl. 60(5), 1299-1309, (2010). https://doi.org/10.1016/j.camwa.2010.06.010 DOI: https://doi.org/10.1016/j.camwa.2010.06.010

Kızmaz, H., On certain sequence spaces, Canad. Math. Bull. 24(2), 169-176, (1981). https://doi.org/10.4153/CMB-1981-027-5 DOI: https://doi.org/10.4153/CMB-1981-027-5

Knopp, K., Theory and Application of Infinite Series, Blackie, 1944.

Kuratowsky, K., Sur les espaces complets. Fundam. Math. 15, 301-309, (1930) https://doi.org/10.4064/fm-15-1-301-309 DOI: https://doi.org/10.4064/fm-15-1-301-309

Malkowsky, E., Modern functional analysis in the theory of sequence spaces and matrix transformations, Jordan J. Math. Stat. 1 (1), 1-29, (2008).

Malkowsky, E., Compact matrix operators between some BK− spaces, in: M. Mursaleen (Ed.), Modern Methods of Analysis and Its Applications, Anamaya Publ., New Delhi, 2010 86-120.

Malkowsky, E., Rakocevic, V., An introduction into the theory of sequence space and measures of noncompactness. Zb Rad(Beogr) 9(17), 143-234, (2000).

Malkowsky, E., Rakocevic, V., Measure of noncompactness of Linear operators between spaces of sequences that are (N, q ¯ ) summable or bounded, Czechoslovak Math. J. 51(3), 505-522, (2001). https://doi.org/10.1023/A:1013727821173 DOI: https://doi.org/10.1023/A:1013727821173

Malkowsky, E., Linear operators in certain BK-spaces, Bolyai Soc. Math. Studies 5, 241-250, (1996).

Mohapatra, R. N., Sarıgol, M.A., On matrix operators on the series space, Ukr. Math. J. 69(11), 1772-1783, (2018). https://doi.org/10.1007/s11253-018-1469-0 DOI: https://doi.org/10.1007/s11253-018-1469-0

Mursaleen, M, Noman, A.K., Compactness of matrix operators on some new difference sequence spaces. Linear Algebra Appl. 436, 41-52, (2012). https://doi.org/10.1016/j.laa.2011.06.014 DOI: https://doi.org/10.1016/j.laa.2011.06.014

Mursaleen, M, Noman, A.K., Compactness by the Hausdorff measure of noncompactness, Nonlinear Analysis: TMA, 73(8), 2541-2557, (2010). https://doi.org/10.1016/j.na.2010.06.030 DOI: https://doi.org/10.1016/j.na.2010.06.030

Rakocevic, V., Measures of noncompactness and some applications, Filomat, 12, 87-120, (1998).

Sarıgol, M. A., Norms and compactness of operators on absolute weighted mean summable series, Kuwait J. Sci. 43(4), 68-74, (2016).

Sarıgol, M. A., Spaces of series summable by absolute Cesaro and matrix operators, Comm. Math. Appl. 7, 11-22, (2016).

Sarıgol, M. A., On difference sequence spaces, J. Karadeniz Tech. Univ. Fac. Arts Sci. Ser. Math. -Phys. 10, 63-71, (1987).

Stieglitz, M., Titez, H., Matrix transformationen von Folgenraumen Eine Ergebnis¨uberischt, Math Z. 154(1), 1-16, (1977). https://doi.org/10.1007/BF01215107 DOI: https://doi.org/10.1007/BF01215107

Wilansky, A., Summability through functional analysis. Mathematics Studies, vol 85. North Holland, Amsterdam, 1984.

Published
2022-12-21
Section
Articles