On spectral polynomial of splices and links of graphs

Résumé

The spectral polynomial of a graph is the characteristic polynomial of its adjacency matrix. Spectral polynomial of the splice and links of complete graph and star have been obatined recently in the literature. In this paper we generalize these results using the concept of equitable partition.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Harishchandra Ramane, Karnatak University

Professor

Références

A. J. Schwenk, Computing the characteristic polynomial of a graph. Lecture Notes in Math. 406, 153–172, (1974). DOI: https://doi.org/10.1007/BFb0066438

D. Cvetkovic, P. Rowlinson and S. Simi´c, An Introduction to the Theory of Graph Spectra. London Math. Soc. Stud. Texts, Vol. 75, (2010).

F. Celik, U. Sanli and I. N. Cangul, The spectral polynomials of two joining graphs: splices and links. Bol. Soc. Parana. Mat., In Press, (2019).

T. Doslic, Splices, links, and their valence-weighted Wiener polynomials. Graph Theory Notes, New York 48, 47–55, (2005).

Publiée
2022-12-26
Rubrique
Research Articles