Some fixed point results and their applications on integral type contractive condition in fuzzy metric spaces
Résumé
The role of Fuzzy topology in logic programming and algorithm has been recognized and applied on various programs to and more accurate result. In particular, topological methods are employed in order to obtain fixed point semantics for logic programs. In this paper, we prove some fixed point theorems in fuzzy metric spaces. As an application, some consequence theorems are given in support of our result.
Téléchargements
Références
Aamri , M., Moutawakil, D. El, Some new common fixed point theorems under strict contractive conditions, J.Math.Anal.Appl. 270 (1), 181 - 188, (2002). https://doi.org/10.1016/S0022-247X(02)00059-8
Beg, I., Gupta, V., Kanwar, A., Fixed Point on Intuitionistic Fuzzy Metric Spaces Using E.A. Property, Journal of Nonlinear Functional Analysis, 2015, Article ID 20, 15 pages, 2015.
Bhardwaj, V., Gupta, V., Mani, N., Common fixed point theorems without continuity and compatible property of maps, Bol. Soc. Paran. Mat. 35(3), 67-77, (2017). https://doi.org/10.5269/bspm.v35i3.28636
Grabiec, M., Fixed point in fuzzy metric spaces, Fuzzy Sets Syst. 27 (3), 385 - 389, (1988). https://doi.org/10.1016/0165-0114(88)90064-4
George, A., Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64, 395 - 399, (1994). https://doi.org/10.1016/0165-0114(94)90162-7
Gupta, V., Kanwar, A., Fixed point theorem in fuzzy metric spaces satisfying E.A property, Indian Journal of Science and Technology 5, 3767 - 3769, (2012). https://doi.org/10.17485/ijst/2012/v5i12.14
Gupta, V, Mani, N., Fixed Point Theorems and its Applications in Fuzzy Metric Spaces. proceeding of national conference, Advancements in the era of Multi - Disciplinary Systems, Elsevier. 174, 961 - 964, (2013).
Gupta, V., Mani, N., Existence and uniqueness of fixed point in fuzzy metric spaces and its applications, Adv. Intell. Syst. Comput., Springer. 236, 217 - 224, (2014). https://doi.org/10.1007/978-81-322-1602-5_24
Gupta, V., Mani, N., Common fixed points by using E.A. property in fuzzy metric spaces, Adv. Intell. Syst. Comput., Springer. 259, 45 - 54, (2014). https://doi.org/10.1007/978-81-322-1768-8_4
Gupta, V., Saini, R. K., Mani, N., Tripathi, A. K., Fixed Point Theorems Using Control Function in Fuzzy Metric Spaces, Cogent Mathematics 2, Article Id: 1053173, (2015). https://doi.org/10.1080/23311835.2015.1053173
Gupta, V. Ramandeep, Tripathi, A. K., Some common fixed point theorems in fuzzy metric spaces and their applications, Bol. Soc. Paran. Mat. 36(3), 141 - 153, (2018). https://doi.org/10.5269/bspm.v36i3.30467
Gupta, V., Tripathi, A K., Mani, N., Unique common fixed point results with application in fuzzy metric spaces, International Journal of Innovative Technology and Exploring Engineering, 9(2), 2527 - 2529, (2019). https://doi.org/10.35940/ijitee.B7134.129219
Gupta, V., Jungck, G., Mani, N., Common fixed point theorems for new contraction without continuity completeness and compatibility property in partially ordered fuzzy metric spaces, Proceedings of the Jangjeon Mathematical Society. 22(1), 51 - 57, (2019).
Gupta, V., Jungck, G., Mani, N., Some novel fixed point theorems in partially ordered metric spaces, AIMS Mathematics 5(5), 4444 - 4452, (2020). https://doi.org/10.3934/math.2020284
Imdad, M., Ali, J., Some Common Fixed Point Theorems in Fuzzy Metric Spaces, Mathematical communication. 11(2), 153 - 163, (2006).
Jungck , G., Compatible mappings and common fixed points, Internat.J.Math.and Math.Sci. 9, 771 - 779, (1986). https://doi.org/10.1155/S0161171286000935
Jungck, G., Rhoades, B. E., Some fixed point theorems for compatible maps, Internat. J. Math. Math. Sci 16(3), 417 - 428, (1993). https://doi.org/10.1155/S0161171293000535
Kramosil, I. Michalek, J., Fuzzy metric and Statistical metric spaces, Kybernetika, 11(5), 336-344, (1975).
Mishra, S. N., Sharma, N., Singh, S. L., Common fixed points of maps on fuzzy metric spaces, Internat. J. Math. and Math. Sci., 17 (2), 253 - 258, (1994). https://doi.org/10.1155/S0161171294000372
Mani, N., Existence of fixed points and their applications in certain spaces, [PhD Thesis, Maharishi Markandeshwar University, Mullana, India], (2016).
Schweizer, B., Sklar, A., Statistical metric spaces, Pacific J. Math. 10 (1), 313 - 334, (1960). https://doi.org/10.2140/pjm.1960.10.313
Sharma, N., Mani, N., Gulati, N., Unique fixed point results for pairs of mappings on complete metric spaces, Italian Journal of Pure and Applied Mathematics, 42 (2), 798 - 808, 2019.
Zadeh, L. A., Fuzzy Sets, Inform. And Control. 8, 338 - 353, (1965). https://doi.org/10.1016/S0019-9958(65)90241-X
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).