Local properties of fourier series via deferred Riesz mean

  • Pradosh Kumar Pattanaik Gandhi Institute of Engineering and Technology University
  • Susanta Kumar Paikray Veer Surendra Sai University of Technology https://orcid.org/0000-0003-4465-7621
  • Biplab Kumar Rath Gandhi Institute of Engineering and Technology University

Résumé

The convergence of Fourier series of a function at a point depends upon the behaviour of the function in the neighborhood of that point, and it leads to the local property of Fourier series. In the proposed work, we introduce and study the absolute convergence of the deferred Riesz summability mean, and accordingly establish a new theorem on the local property of a factored Fourier series. We also suggest a direction for future researches on this subject, which are based upon the local properties of the Fourier series via basic notions of statistical absolute convergence.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Bhatt, S. N., An aspect of local property of |R, log, 1| summability of the factored Fourier series, Proc. Natl. Inst. India 26, 69–73, (1960). DOI: https://doi.org/10.2748/tmj/1178244624

Braha, N. L. and Loku, V, Estimation of the rate of convergence of Fourier series in the generalized H¨older metric by deferred de la Vallee Poussin mean, J. Inequal. Spec. Funct. 9, 122–128, (2018).

Braha, N. L., Loku, V. and Srivastava, H. M., Λ2 -Weighted statistical convergence and Korovkin and Voronovskaya type theorems, Appl. Math. Comput. 266, 675–686, (2015). DOI: https://doi.org/10.1016/j.amc.2015.05.108

Bor, H., Local property of |N, pn|k-summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica 17, 165–170, (1989).

Bor, H., On the local property of |N¯, pn|k-summability of factored Fourier series, J. Math. Anal. 163, 220–226, (1992). DOI: https://doi.org/10.1016/0022-247X(92)90289-P

Jena, B. B. and Paikray, S. K., Product of deferred Ces`aro and deferred weighted statistical probability convergence and its applications to Korovkin-type theorems, Univ. Sci. 25, 409–433 (2020). DOI: https://doi.org/10.11144/Javeriana.SC25-3.podc

Jena, B. B., Paikray, S. K. and Dutta, H., A new approach to Korovkin-type approximation via deferred Cesaro statistical measurable convergence, Chaos, Solitons & Fractals 148, Article ID 111016, 1–9, (2021). DOI: https://doi.org/10.1016/j.chaos.2021.111016

Jena, B. B., Paikray, S. K. and Dutta, H., On various new concepts of statistical convergence for sequences of random variables via deferred Ces`aro mean, J. Math. Anal. Appl. 487, Article ID 123950, 1–18, (2020). DOI: https://doi.org/10.1016/j.jmaa.2020.123950

Jena, B. B., Vandana, Paikray, S. K. and Misra, U. K. On generalized local property of |A; δ|k-summability of factored Fourier series, Int. J. Anal. Appl. 16, 2019–221, (2018).

Jena, B. B., Paikray, S. K. and Misra, U. K., Double absolute indexed matrix summability with its applications, Tbilisi Math. J. 11, 1–18, (2018). DOI: https://doi.org/10.32513/tbilisi/1546570881

Krasniqi, X. Z., Lenski, W. and Szal, B., Approximation of integrable functions by generalized de la Vallee Poussin means of the positive order, J. Appl. Anal. Comput. 12, 106–124 (2022). DOI: https://doi.org/10.11948/20210067

Matsumoto, K., Local property of the summability |R, pn, 1|, Tohoku Math. J 8, 114–124, (1956). DOI: https://doi.org/10.2748/tmj/1178245014

Mazhar, S. M., On the summability factors of infinite series, Publ. Math. Debrecen 13, 229–236, (1966). DOI: https://doi.org/10.5486/PMD.1966.13.1-4.28

Mishra, K. N., Multipliers for |N, pn| -summability of Fourier series, Bull.Inst. Math. Acad. Sinica 14, 431–438, (1984).

Mohanty, R., On the summability |R, logw, 1| of Fourier series, J. London Math. soc. 25, 67–72, (1950). DOI: https://doi.org/10.1112/jlms/s1-25.1.67

Paikray, S. K., Jati, R. K., Misra, U. K. and Sahoo, N. C., On degree approximation of Fourier series by product means, Gen. Math. Notes 13, 22–30, (2012).

Parida, P., Paikray, S. K. and Jena, B. B., Generalized deferred Ces`aro equi-statistical convergence and analogous approximation theorems, Proyecciones J. Math. 39, 307–331, (2020). DOI: https://doi.org/10.22199/issn.0717-6279-2020-02-0020

Tichmarsh, E. C., The Theory of Functions, Oxford University Press, London, (1961).

Zygmund, A., Trigonometric series, vol. I, Cambridge Univ. Press, Cambridge, (1959).

Publiée
2022-12-28
Rubrique
Articles