Explicit formulas for the matrix exponential
Résumé
In this work, new closed-form formulas for the matrix exponential are provided using certain polynomials which areconstructed with the help of a generalization of Hermite's interpolation formula. Our method is direct and elementary, it gives tractable and manageable formulas not current in
the extensive literature on this essential subject. Moreover, others are recuperated and generalized. Several particular cases and examples are formulated to illustrate the method presented in this paper.
Téléchargements
Références
A. H. Al-Mohy, N. J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM J. Matrix Anal. Appl. 31 , 970–989, (2009). DOI: https://doi.org/10.1137/09074721X
T. M. Apostol, Some explicit formulas for the exponential matrix e tA, Amer. Math. Monthly. 76 , 284–292, (1969). DOI: https://doi.org/10.1080/00029890.1969.12000200
R. Bellman, On the calculation of matrix exponential, Linear Multilinear Algebra. 13 , 73–79, (1983). DOI: https://doi.org/10.1080/03081088308817504
T. C Fung, Computation of the matrix exponential and its derivatives by scaling and squaring, Int. J. Numer. Methods. Eng, 59 , 1273–1286, (2004). DOI: https://doi.org/10.1002/nme.909
W. A. Harris, J. P. Fillmore, and D.R. Smith, Matrix exponentials-another approach, SIAM Rev. 43 , 694–706, (2001). DOI: https://doi.org/10.1137/S0036144599362406
N. J. Higham, Functions of Matrices: Theory and Applications. SIAM, Philadelphia, 2008. DOI: https://doi.org/10.1137/1.9780898717778
J. L. Howland, Further ways to approximate the exponential of a matrix, Linear Multilinear Algebra. 14 , 121–129, (1983). DOI: https://doi.org/10.1080/03081088308817549
E. I. Leonard, The matrix exponential, SIAM Rev. 38 , 507–512, (1996). DOI: https://doi.org/10.1137/S0036144595286488
E. Liz, Classroom note: A note on the matrix exponential, SIAM Rev. 40 , 700–702, (1998). DOI: https://doi.org/10.1137/S0036144596320752
S. Miyajima, Verified computation of the matrix exponential, Adv. Comput. Math. 45 , 137–152, (2019). DOI: https://doi.org/10.1007/s10444-018-9609-5
C. Moler and C. V. Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20 , 801–836, (1978). DOI: https://doi.org/10.1137/1020098
M. Mou¸couf, S. Zriaa, A new approach for computing the inverse of confluent Vandermonde matrices via Taylor’s expansion, Linear Multilinear Algebra. (2021).. DOI: https://doi.org/10.1080/03081087.2021.1940807
E. J. Putzer, Avoiding the Jordan canonical form in the discussion of linear systems with constant coefficients, Amer. Math. Monthly. 73 , 2–7, (1966). DOI: https://doi.org/10.1080/00029890.1966.11970714
J. S. Respondek, Another dubious way to compute the exponential of a matrix, International Conference on Computational Science and Its Applications. Springer, Cham , 465–478, (2021). DOI: https://doi.org/10.1007/978-3-030-86653-2_34
J. S. Respondek, Matrix black box algorithms–a survey, Bull. Pol. Acad. Sci. Tech. Sci., Vol. 70 (2), p. e140535, (2022).
J. Sastre, J. Ibanez, P. Ruiz, E. Defez, New scaling-squaring Taylor algorithms for computing the matrix exponential, SIAM J. Sci. Comput. 37 , A439–A455, (2015). DOI: https://doi.org/10.1137/090763202
A. Spitzbart, A generalization of Hermite’s interpolation formula, Amer. Math. Monthly. 67 , 42–46, (1960). DOI: https://doi.org/10.1080/00029890.1960.11989446
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).