On the centralizer of a matrix and wild problem
Resumo
In this paper, we give a full description of the centralizer of a given square matrix over an arbitrary field and use this result to solve a weaker version of the Wild Problem.
Downloads
Referências
W. A. Adkins and S. H. Weintraub, Algebra: An Approach Via Module Theory, vol. 136, Springer Science & Business Media, 2012.
Belitskii, Genrich R., and Vladimir V. Sergeichuk. Complexity of matrix problems. Linear Algebra and its applications 361 (2003): 203-222.
S. Bouarga and M. E. Charkani, On primary decomposition and polynomial of matrices, International Journal of Algebra, Vol. 8, 2014, no. 4, 149 - 157.
M. Charkani and S. Bouarga, Polynomial solution of sylvester matrix equation, International Journal of Algebra 9(2015), 185–194.
S. Lang.Algebrat,Graduate Texts in Mathematics, New York, USA (2002), 572–585.
R. Lal,Algebra 2: Linear Algebra, Galois Theory, Representation Theory, Group Extensions and Schur Multiplier, Springer, 2017.
K. O’Meara, J. Clark and C. Vinsonhaler, Advanced Topics in Linear Algebra: Weaving Matrix Problems Through The Weyr Form, Oxford University Press, 2011.
P. Singla, On representations of general linear groups over principal ideal local rings of length two, J. Algebra. 324(2010), no. 9, 2543–2563.
Wang, Tianhao. Explicit description of centralizers for a matrix. arXiv preprint arXiv:1910.13666 (2019).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



