The Chevalley--Jordan decomposition and spectral projections of complex matrices
Résumé
In this paper, a novel and simple method for obtaining the Chevalley-Jordan decomposition and the spectral projectionsof matrices is presented. Our method is direct and elementary, it gives tractable and manageable formulas with minimum
mathematical prerequisites. Moreover, knowing only some associated matrices of the matrix, we can simply provide the
minimal polynomial of this matrix.
Téléchargements
Références
A. A. Ahmad Fuad and T. Ahmad. Decomposing the Krohn-Rhodes form of electroen- cephalography (EEG) signals using Jordan-Chevalley decomposition technique, Axioms, vol. 10, no. 1, p. 10, 2021.
W. A. Harris, J. P. Fillmore, and D. R. Smith, Matrix Exponentials-Another Approach. SIAM review 43 (2001), 694-706.
M. Moucouf. P-canonical forms and Drazin inverses. arXiv:2007.10199v4 [math.RA](2021).
M. Moucouf, S. Zriaa. A new approach for computing the inverse of confluent Vandermonde matrices via Taylor's expansion. Linear Multilinear Algebra (2021). DOI:10.1080/03081087.2021.1940807.
M. Moucouf, S. Zriaa. Explicit formulas for the matrix exponential. Accepted for publication in Boletim da Sociedade Paranaense de Matematica (2022).
A. Spitzbart. A generalization of Hermite's interpolation formula. Am Math Mon. 1960;67(1):42-46.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).