Local and Global Well-Posedness for Fractional Porous Medium Equation in Critical Fourier-Besov Spaces
Resumo
In this paper, we study the Cauchy problem for the Fractional Porous Medium Equation in Rn for n ≥ 2. By using the contraction mapping method, Littlewood-Paley theory and Fourier analysis, we get, when 1 < β ≤ 2, the local solution v ∈ XT := LT ∞(FBp,r (2 − 2m −β + n/p' )(Rn))∩ LTρ1(FBp,r s1(Rn))∩ LTρ2(FBp,r s2 ( Rn)) with 1 ≤ p < ∞, 1 ≤ r ≤ ∞, and the solution becomes global when the initial data is small in critical Fourier-Besov spaces FBp,r (2 − 2m −β + n/p' )(Rn) . In addition, We establish a blowup criterion for the solutions. Furthermore, the global existence of solutions with small initial data in FB∞,1 (2 − 2m −β + n )(Rn) is also established. In the limit case β = 1, we prove global well-posedness for small initial data in critical Fourier-Besov spaces FBp,1 (2 − 2m + n/p' )(Rn) with 1 ≤ p < ∞ and FB∞,1 (2 − 2m + n )(Rn), respectively.
Downloads
Referências
H. Bahouri, J. Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, (Vol. 343, pp. 523-pages), Berlin: Springer, (2011).
P. Biler, G. Karch, Blowup of solutions to generalized Keller-Segel model, J. Evol. Equ. 10 (2010) 247–262.
P. Biler, G. Wu, Two-dimensional chemotaxis models with fractional diffusion, Math. Methods Appl. Sci. 32, (2009) 112–126.
J.M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. école Norm. Sup. 14(4) (1981), 209–246.
L. Caffarelli, J. L. Vázquez, Nonlinear porous medium flow with fractional potential pressure, Arch Rational Mech Anal, 202(2011), 537-565.
M. Cannone, G. Wu, Global well-posedness for Navier-Stokes equations in critical Fourier–Herz spaces, Nonlinear Analysis: Theory, Methods and Applications, 75(9) (2012), 3754-3760.
L. Corrias, B. Perthame, H. Zaag, Global solutions of some chemotaxis and angiogenesis system in high space dimensions, Milan J. Math. 72 (2004), 1–28.
Y. Cui, W. Xiao, Gevrey regularity and time decay of the fractional Debey-Hückel system in Fourrier-Besov spaces, Bulletin of the Korean Mathematical Society, 57(6) (2020), 1393-1408.
C. Escudero, The fractional Keller-Segel model, Nonlinearity 19, (2006) 2909–2918.
T. Iwabuchi, Global well-posedness for Keller-Segel system in Besov type spaces, J. Math. Anal. Appl. 379 (2) (2011), 930–948.
E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of theoretical biology, 26(3)(1970), 399-415.
P. Konieczny, T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differ. Equ. 250 (2011), 3859-3873.
H. Kozono, Y. Sugiyama, Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system, J. Evol. Equ. 8 (2) (2008), 353–378.
P. G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, Research Notes in Mathematics, Chapman and Hall/CRC, Boca Raton (2002).
P. G. Lemarié-Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space, Adv. Differ. Equ. 18 (2013), 1189–1208.
Z. Lei, F. Lin, Global mild solutions of Navier-Stokes equations, Commun. Pure Appl. Math. 64 (2011), 1297-1304.
T. Ogawa, S. Shimizu, The drift diffusion system in two-dimensional critical Hardy spaces, J. Funct. Anal., 255 (2008), 1107–1138.
T. Ogawa, S. Shimizu, End-point maximal regularity and its application to two-dimensional Keller-Segel system, Math. Z. 264 (2010), 601–628.
T. Ogawa, M. Yamamoto, Asymptotic behavior of solutions to drift-diffusion system with generalized dissipation, Mathematical Models and Methods in Applied Sciences, 19(06) (2009), 939-967.
S. Serfaty, J. L. Vázquez, A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators, Calculus of Variations and Partial Differential Equations, 49(2014), 1091-1120.
W. Xiao, J. Chen, D. Fan, X. Zhou, Global Well-Posedness and Long Time Decay of Fractional Navier-Stokes Equations in Fourier Besov Spaces, In Abstract and Applied Analysis (Vol.2014), Hindawi Publishing Corporation.
W. Xiao, Y. Zhang, Gevrey Regularity and Time Decay of Fractional Porous Medium Equation in Critical Besov Spaces, Journal of Applied Mathematics and Physics, 10(1) (2022), 91-111.
W. Xiao, X. Zhou, On the Generalized Porous Medium Equation in Fourier-Besov Spaces, J. Math. Study., 53 (2020), 316-328.
Z. Zhai, Global well-posedness for nonlocal fractional Keller-Segel systems in critical Besov spaces, Nonlinear Anal. 72 (2010) 3173–3189.
J. Zhao, Well-posedness and Gevrey analyticity of the generalized Keller-Segel system in critical Besov spaces, Annali di Matematica Pura ed Applicata (1923-), 197 (2018), 521-548.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).