On Rough I-Convergence of Complex Uncertain Sequences
On Rough I-Convergence of Complex Uncertain Sequences
Resumo
In this paper, we introduce the different notion of rough I-convergence of complex uncertain sequence using the concept of I-convergence and rough convergence of complex uncertain sequence namely rough I-convergent almost surely, rough I-convergence in measure, rough I-convergence in distribution, rough I-convergence in mean. Finally, we studied some of their basic properties and examined the relationship among them.
Downloads
Não há dados estatísticos.
Referências
[1] X. Chen, Y. Ning, X. Wang, Convergence of complex uncertain sequences, J. Intell. Fuzzy Syst., 30(6) (2016), 3357-3366.
[2] S. Debnath, B. Das, On rough statistical convergence of complex uncertain sequences, New Math. Nat. Comput., (2021), doi:10.1142/S1793005722500454.
[3] S. Debnath, B. Das, Statistical convergence of order α for complex uncertain sequences, J.Uncertain Syst., 14(2) (2021), doi:10.1142/S1752890921500124.
[4] S. Debnath, D. Rakshit, Rough convergence in metric space, J. Interdiscip. Multidiscip. Res., (2017), 449-554.
[5] S. Debnath, B. Das, On rough convergence of complex uncertain sequences, J.Uncertain Syst., 14(4) (2021), doi:10.1142/S1752890921500215.
[6] E. Dndar, C. akan, Rough I-convergence, Gulf J. Math, 2(1) (2019), 45-51.
[7] A. Esi, S. Debnath, S. Saha Asymptotically double λ2-statistically equivalent sequences of interval numbers, Mathematica, 62(1) (2020), 39-46.
[8] H. Fast, Sur la convergence statistique, Colloq. Math., 2(3-4) (1951), 241-244.
[9] J. A. Fridy, On statistically convergence, Analysis, 5 (1985), 301-313.
[10] O¨. Ki¸si, Sλ(I)-convergence of complex uncertain sequences, Mat. Stud., 51(2) (2019), 183- 194.
[11] P. Kostyrko, M. Maˇ caj, M. Sleziak, and T. Sˇal´ at, I-convergence, Real Anal. Exchange, 26 (2000/2001), 669686.
[12] B. Liu, Uncertainty theory, 2nd edition, Springer-Verlag, (2007).
[13] B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3(1) (2009), 3-10.
[14] M. Mursaleen, S. Debnath, D. Rakshit I-statistical limit superior and I-statistical limit inferior, Filomat, 31(7) (2017), 2103-2108.
[15] P. K. Nath, B. C. Tripathy, Convergent complex uncertain sequences defined by Orlicz function, Ann. Univ. Craiova-Math. Comput. Sci. Ser., 46(1) (2019), 139-149.
[16] Z. Peng, Complex uncertain variable, Doctoral Dissertation, Tsinghua University, 2012.
[17] H. X. Phu , Rough convergence in normed linear spaces, Numer. Funct. Anal. Optim., 22(1- 2) (2001), 199-222.
[18] H. X. Phu , Rough convergence in infinite-dimensional normed spaces, Numer. Funct. Anal. Optim., 24 (2003), 285-301.
[19] S. Roy, B. C. Tripathy, S. Saha, Some results on p−distance and sequence of complex uncertain variables, Commun. Korean. Math. Soc., 35(3) (2020), 907-916.
[20] S. Saha, B. C. Tripathy, S. Roy, On almost convergence of complex uncertain sequences, New Math. Nat. Comput., 16(03) (2020), 573-580.
[21] E. Savas, S. Debnath, D. Rakshit, On I-statistically rough convergence, Publ. Inst. Math., 105(119) (2019), 145-150.
[22] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1) (1951), 73 - 74.
[23] B. C. Tripathy, P. K. Nath, Statistical convergence of complex uncertain sequences, New Math. Nat. Comput., 13(3) (2017), 359-374.
[24] B. C. Tripathy, B. Hazarika, I-monotonic and I-convergent sequences, Kyungpook Math. J., 51(2) (2011), 233-239.
[25] T. Ye, Y. Zhu, A metric on uncertain variables, Int. J. Uncertain. Quan., 8(2018), 251-266.
[26] C. You, L. Yan, The p−distance of uncertain variables, J. Intell. Fuzzy Syst., 32(1) (2017), 999-1006.
[27] C. You, L. Yan, Relationships among convergence concepts of uncertain sequences, Comput. Model. New Technol., 20(3) (2016), 12-16.
[2] S. Debnath, B. Das, On rough statistical convergence of complex uncertain sequences, New Math. Nat. Comput., (2021), doi:10.1142/S1793005722500454.
[3] S. Debnath, B. Das, Statistical convergence of order α for complex uncertain sequences, J.Uncertain Syst., 14(2) (2021), doi:10.1142/S1752890921500124.
[4] S. Debnath, D. Rakshit, Rough convergence in metric space, J. Interdiscip. Multidiscip. Res., (2017), 449-554.
[5] S. Debnath, B. Das, On rough convergence of complex uncertain sequences, J.Uncertain Syst., 14(4) (2021), doi:10.1142/S1752890921500215.
[6] E. Dndar, C. akan, Rough I-convergence, Gulf J. Math, 2(1) (2019), 45-51.
[7] A. Esi, S. Debnath, S. Saha Asymptotically double λ2-statistically equivalent sequences of interval numbers, Mathematica, 62(1) (2020), 39-46.
[8] H. Fast, Sur la convergence statistique, Colloq. Math., 2(3-4) (1951), 241-244.
[9] J. A. Fridy, On statistically convergence, Analysis, 5 (1985), 301-313.
[10] O¨. Ki¸si, Sλ(I)-convergence of complex uncertain sequences, Mat. Stud., 51(2) (2019), 183- 194.
[11] P. Kostyrko, M. Maˇ caj, M. Sleziak, and T. Sˇal´ at, I-convergence, Real Anal. Exchange, 26 (2000/2001), 669686.
[12] B. Liu, Uncertainty theory, 2nd edition, Springer-Verlag, (2007).
[13] B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3(1) (2009), 3-10.
[14] M. Mursaleen, S. Debnath, D. Rakshit I-statistical limit superior and I-statistical limit inferior, Filomat, 31(7) (2017), 2103-2108.
[15] P. K. Nath, B. C. Tripathy, Convergent complex uncertain sequences defined by Orlicz function, Ann. Univ. Craiova-Math. Comput. Sci. Ser., 46(1) (2019), 139-149.
[16] Z. Peng, Complex uncertain variable, Doctoral Dissertation, Tsinghua University, 2012.
[17] H. X. Phu , Rough convergence in normed linear spaces, Numer. Funct. Anal. Optim., 22(1- 2) (2001), 199-222.
[18] H. X. Phu , Rough convergence in infinite-dimensional normed spaces, Numer. Funct. Anal. Optim., 24 (2003), 285-301.
[19] S. Roy, B. C. Tripathy, S. Saha, Some results on p−distance and sequence of complex uncertain variables, Commun. Korean. Math. Soc., 35(3) (2020), 907-916.
[20] S. Saha, B. C. Tripathy, S. Roy, On almost convergence of complex uncertain sequences, New Math. Nat. Comput., 16(03) (2020), 573-580.
[21] E. Savas, S. Debnath, D. Rakshit, On I-statistically rough convergence, Publ. Inst. Math., 105(119) (2019), 145-150.
[22] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1) (1951), 73 - 74.
[23] B. C. Tripathy, P. K. Nath, Statistical convergence of complex uncertain sequences, New Math. Nat. Comput., 13(3) (2017), 359-374.
[24] B. C. Tripathy, B. Hazarika, I-monotonic and I-convergent sequences, Kyungpook Math. J., 51(2) (2011), 233-239.
[25] T. Ye, Y. Zhu, A metric on uncertain variables, Int. J. Uncertain. Quan., 8(2018), 251-266.
[26] C. You, L. Yan, The p−distance of uncertain variables, J. Intell. Fuzzy Syst., 32(1) (2017), 999-1006.
[27] C. You, L. Yan, Relationships among convergence concepts of uncertain sequences, Comput. Model. New Technol., 20(3) (2016), 12-16.
Publicado
2025-09-22
Edição
Seção
Artigos
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



