Algebra of generalized $(k,n)$-Fibonacci Toeplitz and Hankel matrices

Résumé

The aim of this paper is to investigate the generalized $(k,n)$-Fibonacci Toeplitz and Hankel matrices formed with the entries of the generalized Fibonacci sequence of order $k$. We obtain the determinant, trace, inverse, spread and some algebraic properties for these matrices in closed form. Moreover, we obtain the $||.||_1, ||.||_\infty$, Euclidean norm and bounds (both lower and upper) for the spectral norm.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Kalika Prasad, Central University of Jharkhand, India
Senior Research Fellow, Department of Mathematics,
Munesh Kumari, Central University of Jharkhand, India
Senior Research Fellow, Department of Mathematics,

Références

M. Akbulak and D. Bozkurt. On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 37(2):89–95, (2008).

E. Carrasquinha, C. Amado, A. M. Pires, and L. Oliveira. Image reconstruction based on circulant matrices, Signal Process. Image Commun., 63:72–80, (2018).

R. Cline, R. Plemmons, and G. Worm. Generalized inverses of certain Toeplitz matrices, Linear Algebra Appl., 8(1):25–33, (1974).

R. Frontczak. Sums of powers of Fibonacci and Lucas numbers: A new bottom-up approach. Notes Number Theory Discrete Math., 24(2):94–103, (2018).

H. Gokbas and R. Turkmen. On the norms of r-Toeplitz matrices involving Fibonacci and Lucas numbers, Advances in Linear Algebra & Matrix Theory, 6(2):31–39, (2016).

R. M. Gray. Toeplitz and circulant matrices: A review, Foundations and Trends in Communications and Information, 2(3):155–239, (2006).

S. Halici. On some inequalities and Hankel matrices involving Pell, Pell-Lucas numbers, Math. Rep, 65(15):1–10, (2013).

R. A. Horn and C. R. Johnson. Norms for vectors and matrices, matrix analysis, Ch-5, Cambridge University Press, Cambridge, 313–386, (1990).

E. G. Karpuz, F. Ates, A. Dilek Gungor, I. Naci Cangul, and A. Sinan C evik. On the norms of Toeplitz and Hankel matrices with Pell numbers, AIP Conf. Proc., 1281, 1117–1120. American Institute of Physics, (2010).

C. Kizilates. Explicit, determinantal, recursive formulas, and generating functions of generalized Humbert–Hermite polynomials via generalized Fibonacci polynomials, Math. Methods Appl. Sci. (2023).

T. Koshy. Fibonacci and Lucas numbers with applications, John Wiley & Sons, (2019).

M. Kumari, K. Parasd, and J. Tanti. A note on linear codes with generalized Fibonacci matrices. J˜nanabha, 52(2):77–81, (2022).

M. Kumari, K. Prasad, J. Tanti, and E. Ozkan. On the properties of r-circulant matrices involving Mersenne and Fermat numbers, Int. J. Nonlinear Anal. Appl. 14 (5), 121–131, (2023).

L. Mirsky. The spread of a matrix, Mathematika, 3(2):127–130, (1956).

B. J. Olson, S. W. Shaw, C. Shi, C. Pierre, and R. G. Parker. Circulant matrices and their application to vibration analysis, Applied Mechanics Reviews, 66(4), (2014).

K. Prasad and H. Mahato. Cryptography using generalized Fibonacci matrices with Affine-Hill cipher, J. Discrete Math. Sci. Cryptogr., 25(8):2341–2352, (2022).

K. Prasad and H. Mahato. On some new identities of Lucas numbers and generalization of Fibonacci trace sequences, Palest. J. Math. 12(2), 329–340, (2023).

K. Prasad, M. Kumari, and H. Mahato. A modified public key cryptography based on generalized Lucas matrices, Commun. Comb. Optim., 10(3), 665–679, (2025), https://doi.org/10.22049/CCO.2024.28022.1419

K. Prasad, H. Mahato, and M. Kumari. Some properties of r-circulant matrices with k-balancing and k-Lucas balancing numbers, Bol. Soc. Mat. Mex. 29(2):Article: 44, (2023).

S. Q. Shen. On the norms of Toeplitz matrices involving k-Fibonacci and k-Lucas numbers, Int. J. Contemp. Math. Sci. 7(8):363–368, (2012).

J. Shtayat and A. Al-Kateeb. The Perrin r-matrix and more properties with an application, J. Discrete Math. Sci. Cryptogr. 25(1):41–52, (2022).

S. Solak and M. Bahsi. On the spectral norms of Toeplitz matrices with Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 42(1):15–19, (2013).

Y. Soykan and M. Gocen. On some properties of k-circulant matrices with the generalized 3-primes numbers, Int. J. Nonlinear Anal. Appl., 14(1), (2022).

U. Tamm. Some aspects of Hankel matrices in coding theory and combinatorics, Electron. J. Comb. 8(1), A1, (2001).

G. Zielke. Some remarks on matrix norms, condition numbers, and error estimates for linear equations, Linear Algebra Appl. 110:29–41, (1988).

M. Zeriouh, A. Chillali, and A. Boua, Cryptography based on the matrices, Bol. Soc. Parana. Mat. 37(3), 75-83, (2019).

Publiée
2025-03-18
Rubrique
Research Articles