Congruences for simultaneously s-regular and t-regular partition function

  • Pujashree Buragohain Rajiv Gandhi University
  • Nipen Saikia Rajiv Gandhi University

Resumo

A partition of a positive integer $n$ is said to be simultaneously $s$-regular and $t$-regular partition if none of the parts are divisible by $s$ and $t$. In this paper, we establish many infinite families of congruences for simultaneously $s$-regular and $t$-regular partition function by considering some particular values of $s$ and $t$.

Downloads

Não há dados estatísticos.

Referências

B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.

B. C. Berndt and R. A. Rankin, Ramanujan: Letters and Commentary, Amer. Math. Soc., 1995.

N. D. Baruah and K. K. Ojah, Partitions with designated summands in which all parts are odd, Integers, 15 (2015), #A9.

S.-P. Cui and N. S. S. Gu, Arithmetic properties of ℓ-regular partitions, Adv. Appl. Math. 51 (2013), 507-523.

M. D. Hirschhorn and J. A. Sellers, Elementary proofs of parity results for 5-regular partitions, Bull. Aust. Math. Soc. 81 (2010), 58-63.

M. D. Hirschhorn, The Power of q, A Personal Journey, Developments in Mathematics, Springer, Cham, 2017.

W. J. Keith, A bijection for partitions simultaneously s-regular and t-distinct, Integers, 23 (2023), #A9.

D. Penniston, Arithmetic of ℓ-regular partition functions, Int. J. Number Theory 4 (2008), 295-302.

S. Ramanujan, Congruence properties of partitions, Math. Z. 9 (1921), 147-153.

S. Ramanujan and G. H. Hardy, Collected papers, Chelsea, New York, 1962.

J. J. Webb, Arithmetic of the 13-regular partition function modulo 3, Ramanujan J. 25 (2011), 49-56.

E. X. W. Xia and O. X. M. Yao, Some modular relations for the G¨ ollnitz-G¨ ordon functions by an even-odd method, J. Math. Anal. Appl. 387 (2012), 126-138.

E. X. W. Xia and O. X. M. Yao, Analogues of Ramanujan’s partition identities, Ramanujan J. 31 (2013), 373-396.

Publicado
2025-05-28
Seção
Artigos