Subclasses of Close-to-Convex Functions With Respect to Symmetric and Conjugate Points
Resumen
The main motive of this research article is to study the upper bounds of the coefficients for certain subclasses of Sakaguchi type functions with fixed point and defined with subordination in the unit disc E = {z ∈ C :| z |< 1}. This work is a generalization of some earlier derived results.
Descargas
La descarga de datos todavía no está disponible.
Citas
[1] M. Acu and S. Owa, On some subclasses of univalent functions, J. Inequal. Pure Appl. Math.,
6(3)(2005), 1-6.
[2] T. Al-Hawary, B. A. Frasin and M. Darus, On certain subclass of analytic functions with fixed
point, J. Appl. Math., Article Id. 312387 (2013), 1-8.
[3] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann.
Math., 17(1915-16), 12-22.
[4] R. N. Das and P. Singh, On subclasses of schlicht mappings, Int. J. Pure Appl. Math., 8(1977),
864-872.
[5] R. M. El-Ashwah and D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan
Math Soc., 2(1)(1987), 85-100.
[6] R. M. Goel and B. S. Mehrok, A subclass of starlike functions with respect to symmetric points,
Tamkang J. Math., 13(1)(1982), 11-24.
[7] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Pol. Math.,
28(1973), 297-326.
[8] S. Kanas and F. Ronning, Uniformly starlike and convex functions and other related classes of
univalent functions, Ann. Univ. Mariae Curie-Sklodowska, Section A, 53(1999), 95-105.
[9] P. T. Mocanu, Une propriete de convexite g´en´eralis´ee dans la th´eorie de la repr´esentation conforme,
Mathematica (CLUJ), 11(34)(1969), 127-133.
[10] A. T. Oladipo, New subclasses of analytic functions with respect to other points, Int. J. Pure
Appl. Math., 75(1)(2012), 1-12.
[11] S. O. Olatunji and A. T. Oladipo, On a new subfamilies of analytic and Univalent functions with
negative coefficient with respect to other points, Bull. Math. Anal. Appl., 3(2)(2011), 159-166.
[12] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11(1959), 72-75.
[13] C. Selvaraj and N. Vasanthi, Subclasses of analytic functions with respect to symmetric and
conjugate points, Tamkang J. Math., 42(1)(2011), 87-94.
[14] G. Singh and G. Singh, Upper bound of the second Hankel determinant for a subclass of analytic
functions, New Trends in Math. Sci., 2(1)(2014), 53-58.
[15] G. Singh and G. Singh, Certain subclasses of alpha-convex functions with fixed point, J. Appl.
Math. Inform., 40(1-2)(2022), 25-33
6(3)(2005), 1-6.
[2] T. Al-Hawary, B. A. Frasin and M. Darus, On certain subclass of analytic functions with fixed
point, J. Appl. Math., Article Id. 312387 (2013), 1-8.
[3] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann.
Math., 17(1915-16), 12-22.
[4] R. N. Das and P. Singh, On subclasses of schlicht mappings, Int. J. Pure Appl. Math., 8(1977),
864-872.
[5] R. M. El-Ashwah and D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan
Math Soc., 2(1)(1987), 85-100.
[6] R. M. Goel and B. S. Mehrok, A subclass of starlike functions with respect to symmetric points,
Tamkang J. Math., 13(1)(1982), 11-24.
[7] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Pol. Math.,
28(1973), 297-326.
[8] S. Kanas and F. Ronning, Uniformly starlike and convex functions and other related classes of
univalent functions, Ann. Univ. Mariae Curie-Sklodowska, Section A, 53(1999), 95-105.
[9] P. T. Mocanu, Une propriete de convexite g´en´eralis´ee dans la th´eorie de la repr´esentation conforme,
Mathematica (CLUJ), 11(34)(1969), 127-133.
[10] A. T. Oladipo, New subclasses of analytic functions with respect to other points, Int. J. Pure
Appl. Math., 75(1)(2012), 1-12.
[11] S. O. Olatunji and A. T. Oladipo, On a new subfamilies of analytic and Univalent functions with
negative coefficient with respect to other points, Bull. Math. Anal. Appl., 3(2)(2011), 159-166.
[12] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11(1959), 72-75.
[13] C. Selvaraj and N. Vasanthi, Subclasses of analytic functions with respect to symmetric and
conjugate points, Tamkang J. Math., 42(1)(2011), 87-94.
[14] G. Singh and G. Singh, Upper bound of the second Hankel determinant for a subclass of analytic
functions, New Trends in Math. Sci., 2(1)(2014), 53-58.
[15] G. Singh and G. Singh, Certain subclasses of alpha-convex functions with fixed point, J. Appl.
Math. Inform., 40(1-2)(2022), 25-33
Publicado
2025-11-01
Número
Sección
Research Articles
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



