Some characterizations on gradient almost $\eta$-Ricci-Bourguignon solitons

Abstract

 We characterize a Riemannian manifold with gradient almost $\eta$-Ricci Bourguignon solitons structures. We show that a gradient almost $\eta$-Ricci-Bourguignon soliton is gradient $(-\frac{1}{\omega u})$-almost traceless Ricci soliton with the potential function $k$. Moreover, we investigate that a gradient $(-\frac{1}{\omega u})$-almost traceless Ricci soliton is isometric to a standard unit sphere $\mathbb{S}^{n}$, hyperbolic space $\mathbb{H}^{n}$ and Euclidean space $\mathbb{R}^{n}$ with constant scalar curvature or its associated vector fields is conformal. Finally, we deduce some properties of integral formulas for the gradient compact case.

Downloads

Download data is not yet available.

References

Aquino, C., Barros, A., Ribeiro, E. Jr., Some applications of the Hodge-de Rham decomposition to Ricci solitons, Results Math., 60(1), 235-246, (2011).

Aubin, T., Metriques Riemanniennes et courbure, J. Differ. Geom., 4(4), 383–424, (1970).

Blaga, A. M., Perktas, S. Y., Remarks on almost η-Ricci solitons in ϵ-para Sasakian manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68(2), 1621-1628, (2019).

Blaga, A. M., Ta¸stan, H. M., Some results on almost η-Ricci-Bourguignon solitons, J. Geom. Phys., 168, 104316, (2022).

Barros, A., Gomes, J. N., A compact gradient generalized quasi-Einstein metric with constant scalar curvature, J. Math. Anal. Appl., 401(2), 702–705, (2013).

Barros, A., Ribeiro, E. Jr., Characterizations and Integral formulae for generalized m-quasi-Einstein metrics, Bull Braz. Math. Soc, New Series., 45(2), 325-341, (2014).

Barros, A., Ribeiro, E. Jr., Some characterizations for compact almost Ricci solitons, Proc. Amer. Math. Soc., 140(3), 1033-1040, (2012).

Barros, A., Ribeiro, E. Jr., Integral formulae on quasi-Einstein manifold and Applications, Glasgow Math. J., 54(2), 213-223, (2012).

Bourguignon, J.P., Ricci curvature and Einstein metrics, Global differential geometry and global analysis., 42–63, 1981.

Catino, G., Cremaschi, L., Djadli, Z., Mantegazza, C., Mazzieri, L., The Ricci-Bourguignon flow, Pac. J. Math., 287(2), 337–370, (2017).

Catino, G., L. Mazzieri, L., Gradient Einstein solitons, Nonlinear Anal., 132(1), 66–94, (2016).

Chaubey S. K., Siddiqi M. D., Prakasha D. G., Invariant Submanifolds of Hyperbolic Sasakian Manifolds and η-Ricci-Bourguignon Solitons, Filomat, 36(2), 409–421,(2022).

Chen, X., Lu, P., Tian, G., A note on uniformization of Riemannian surfaces by Ricci flow, Proc. Amer. Math. Soc., 134, 3391–3393, (2006).

Dwivedi, S., Some results on Ricci-Bourguignon and almost solitons, Can. Math. Bull., 64(3), 591-604, (2021).

Gomes J. N, Wang, Q., Xia, C., On the h-almost Ricci soliton, J. Geom. Phys., 144, 216–222, (2017).

Ghahremani-Gol, H., Some results on h-almost Ricci solitons, J. Geom. Phys., 137, 212–216, (2019).

Hamilton, R.S., Three-manifolds with positive Ricci curvature, J. Differ. Geom., 17(2), 255-306, (1982).

Hamilton, R.S., The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71, 237-262, (1988),.

Ishihara, S., Tashiro, Y.: On Riemannian manifolds admitting a concircular transformation, Math. J. Okayama Univ., 9, 19–47, (1959).

Ivey, T., Ricci solitons on compact three-manifolds, Differ. Geom. Appl., 3(4), 301–307, (1993).

Lott, J., On the long time behavior of type-III Ricci flow solutions, Math. Ann., 339(3), 627-666, (2007).

Ni, L., Wallach, N., On a classification of gradient shrinking solitons, Math. Res. Lett., 15(5), 941–955, (2008).

Perelman, G., The Entropy formula for the Ricci flow and its Geometric Applications, arXiv preprint math/0211159 (2002)

Petersen, P., Wylie, W., Rigidity of gradient Ricci solitons, Pacific J. Math., 241(2), 329-345, (2009).

Siddiqi, M.D., Akyol, M.A., n-Ricci-Yamabe solitons on Riemannian submersions from Riemannian submanifold, arXiv:2004.14124 (2020).

Siddiqui A. N., Siddiqi M. D., Almost Ricci-Bourguignon solitons and geometrical structure in a relativistic perfect fluid spacetime, Balk. J. Geom. Appl., 26(2), 126–138, (2021).

Tashiro, Y., Complete Riemannian manifolds and some vector fields, Trans, Amer. Math.Soc., 117, 673-680, (1965).

Traore, M., Tastan, H.M., Gerdan Aydın, S., On almost n-Ricci-Bourguignon solitons, Miskolc. Math. Notes., 25(1), 493–508, (2024).

Traore, M., Tastan, H.M., On sequential warped product n-Ricci-Bourguignon solitons, Filomat, 38(19), 6785–6797, (2024).

Published
2025-01-16
Section
Research Articles