<b>Attractors and their structure for semilinear wave equations with nonlinear boundary dissipation</b> - doi: 10.5269/bspm.v22i1.7494
Resumo
Long time behavior of a semilinear wave equation with nonlinear boundary dissipation is considered. It is shown that weak solutions generated by the wave dynamics converge asymptotically to a finite dimensional attractor. It is known [CEL1] that the attractor consists of all full trajectories emanating from the set of stationary points. Under the additional assumption that the set of stationary points is finite it is proved that every solution converges to some stationary points at an exponential rate.Downloads
Não há dados estatísticos.
Edição
Seção
Artigos
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).