Spectral radius of extended adjacency tensor of uniform hypergraphs
Resumo
Hypergraphs are a useful tool in chemistry for representing intricate molecular structures and their interactions. The topological indices of hypergraphs provide valuable insights into the structural characteristics of complex molecular systems. The tensor representations are more preferred than the matrix representations of hypergraphs since they maintain complete information about the hypergraphs. In this article, the notion of adjacency tensor has been generalized to degree based extended adjacency tensors and hence the bounds for the spectral radius of uniform hypergraphs. Also, the spectral properties of the extended adjacency tensor of a sunflower hypergraph have been put forward.
Downloads
Referências
C. Berge, Hypergraphs: combinatorics of finite sets, 45, Elsevier, 1984.
K. C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6(2), 507-520, (2008).
K. C. Chang, L. Qi, T. Zhang, A survey on the spectral theory of nonnegative tensors, Numer. Linear Algebra Appl. 20(6), 891-912, (2013).
P. Chodrow, N. Eikmeier, J. Haddock, Non-backtracking spectral clustering of nonuniform hypergraphs SIAM J. Math. Data Sci. 5(2), 251-279, (2023).
G. J. Clark, F. Thomaz, A. T. Stephen, Comparing the principal eigenvector of a hypergraph and its shadows, Linear Algebra Appl. 673, 46-68, (2023).
C. Cui, Z. Luo, L. Qi, H. Yan, The analytic connectivity in uniform hypergraphs: Properties and computation, Numer. Linear Algebra Appl. 30(2), e2468, (2023).
K. C. Das, I. Gutman, I. Milovanovi´c, , E. Milovanovi´c, B. Furtula, Degree-based energies of graphs, Linear Algebra Appl. 554, 185-204, (2018).
C. Duan, L. Wang, X. Li, Some properties of the signless Laplacian and normalized laplacian tensors of general hypergraphs, Taiwanese J. Math. 24(2), 265-281, (2020).
Y. Z. Fan, Y.Wang, Y. H. Bao, J. C.Wan, M. Li, Z. Zhu, Eigenvectors of Laplacian or signless Laplacian of hypergraphs associated with zero eigenvalue. Linear Algebra and its Applications 579, 244-261, (2019).
F. Galuppi, R. Mulas, L. Venturello, Spectral theory of weighted hypergraphs via tensors, Linear Multilinear Algebra 71(3), 317-347, (2023).
A. Gautier, F. Tudisco, M. Hein, Nonlinear Perron-Frobenius theorems for nonnegative Tensors, SIAM Review 65(2), 495-536, (2023).
A. Gautier, F. Tudisco, M. Hein, A unifying Perron–Frobenius theorem for nonnegative tensors via multihomogeneous maps, SIAM J. Matrix Anal. Appl. 40(3), 1206-1231, (2019).
S. Hu, K. Ye, Multiplicities of tensor eigenvalues, Commun. Math. Sci. 14(4), 1049-1071, (2016).
S. Hu, L. Qi, A necessary and sufficient condition for existence of a positive Perron vector, SIAM J. Matrix Anal. Appl. 37(4), 1747-1770, (2016).
S. Hu, L. Qi, The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph, Discrete Appl. Math., 169, 140-151, (2014).
L. J. Kurian, A. V. Chitra, On the Adjacency and Seidel Spectra of Hypergraphs, (2023) arXiv:2309.09751.
H. Lin, B. Zhou, On ABC spectral radius of uniform hypergraphs (2023) arXiv:2303.14929.
C. Lu, L. You, Y. Huang, Sharp bounds for the spectral radii of nonnegative tensors Front. Math. 18(4), 883-901, (2023).
V. Mann, V. Venkatasubramanian, AI-driven hypergraph network of organic chemistry: network statistics and applications in reaction classification, Reaction Chem. Eng. 8(3), 619-635, (2023).
D. Maurya, Ravindran, B. Hypergraph partitioning using tensor eigenvalue decomposition, Plos one 18(7), e0288457, (2023).
L. Qi, Z. Luo, Tensor Analysis, Philadelphia (PA), Society for Industrial and Applied Mathematics; 2017.
L. Qi, H+-eigenvalues of Laplacian and signless Laplacian tensors. Commun. Math. Sci. 12(6), 1045-1064, (2014).
J. Y. Shao, A general product of tensors with applications, Linear Algebra Appl. 439, 2350-2366, (2013).
S. S. Shetty, K. A. Bhat, Degree based energy and spectral radius of a graph with self-loops, AKCE Int. J. Graphs Comb. 20(3), 326-331, (2024).
S. S. Shetty, K. A. Bhat, Sombor index of hypergraphs. MATCH Commun. Math. Comput. Chem. 91(1), 235-254, (2024).
G. H. Shirdel, A. Mortezaee, E. Golpar-Raboky, On spectral theory of a k-uniform directed hypergraph, Appl. Anal. Discrete Math. 17(2), 296-320, (2023).
M.I. Skvortsova, I.I. Fashutdinova, N.A. Mikhailova, Hypergraph models of hydrocarbon molecules and their applications in computer chemistry, Fine Chemical Tech. 9(5), 86-93, (2014).
Y. M. Song, Y. Z. Fan, Y. Wang, M. Y. Tian, J. C. Wan, The spectral property of hypergraph coverings, Discrete Math. 347(3), 113830, (2024) .
R. Sun, W. H. Wang, On the spectral radius of uniform weighted hypergraph, Discrete Math. Algorithms Appl. 15(1), 2250067, (2023).
S. Szalay, M. Pfeffer, V. Murg, et. al., Tensor product methods and entanglement optimization for ab initio quantum chemistry, Int J Quant Chem. 115, 1342–1391, (2015).
W. Yin, Y. Qu, Z. Ma, Q. Liu, Hyperntf: A hypergraph regularized nonnegative tensor factorization for dimensionality reduction, Neurocomputing 512, 190-202, (2022).
X. Yuan, M. Zhang, M. Lu, Some upper bounds on the eigenvalues of uniform hypergraphs, Linear Algebra Appl. 484, 540-549, (2015).
J. Yue, L. Zhang, M. Lu, Largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths, Front. Math. China 11, 623-645, (2016).
X. Yuan, L. Qi, J. Shao, The proof of a conjecture on largest Laplacian and signless Laplacian H-eigenvalues of uniform hypergraphs, Linear Algebra Appl. 490, 18-30, (2016).
L. Zheng, B. Zhou, Pareto H-eigenvalues of nonnegative tensors and uniform hypergraphs, Electron. J. Linear Algebra. 39, 423-433, (2023).
P. Zheng, H. Su, H. Lu, Q. Du, Adaptive hypergraph regularized multilayer sparse Tensor factorization for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sensing 61, 1-18, (2023).
Y. N. Zheng, The zero eigenvalue of the Laplacian tensor of a uniform hypergraph, Linear Multilinear Algebra 72, 1094-1111, (2023).
Y. N. Zheng, Algebraic and geometric multiplicities for some hypergraphs, Discrete Math. 347(2), 113780, (2024).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



