Computing dominating number and dominant metric dimension for zero divisor graphs of order at most 10 of small finite commutative rings

  • Nasir Ali COMSATS University Islamabad, Vehari Campus
  • Maysoon Qousini Al-Zaytoonah University of Jordan, Faculty of Science and Information Technology, Amman, Jordan - 11183.
  • Mubarrah Tariq Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Pakistan.
  • Sehrish Riaz Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Pakistan.
  • Muhammad Imran Qureshi Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Pakistan.
  • Hafiz Muhammad Afzal Siddiqui Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan.

Resumo

In this article we compute the dominating number (DN) and dominant metric dimension (Ddim) of zero divisor graphs of some small finite commutative rings with order not exceeding 14. Consider a commutative ring denoted as  and let  represent its zero-divisor graph (ZD-graph). The vertices of these graphs correspond to the non-zero divisors (ZD) within the commutative ring (CR), where an edge connects two distinct vertices if their product in the ring results in zero. This paper focuses on studying the domination number and dominant metric dimension for zero divisor graphs of orders 3, 4, 5, 6, 7, 8, 9, and 10 within a small finite commutative ring with a unity. Employing a combination of computational methods and mathematical techniques, our research sheds light on the structural nuances of these small commutative rings, enhancing our comprehension of their algebraic behavior and paving the way for potential applications in algebraic theory and related fields.

Downloads

Não há dados estatísticos.

Referências

S. Akbari and A. Mohammadian, ”On zero divisor graphs of a ring,” J. Algebra, vol. 274, pp. 847-855, 2004.

D. D. Anderson and M. Naseer, ”Beck’s coloring of a commutative ring,” J. Algebra, vol. 159, pp. 500-514, 1993.

D. F. Anderson and P. S. Livingston, ”The zero-divisor graph of a commutative ring,” J. Algebra, vol. 217, pp. 434-447, 1999.

C. Hernando, M. Mora, I. M. Pelayo, C. Seara, J. C´aceres, and M. L. Puertas, ”On the metric dimension of some families of graphs,” Electron. Notes Discrete Math., vol. 22, pp. 129-133, 2005.

D. F. Anderson and J. D. LaGrange, ”Commutative Boolean Monoids, reduced rings and the compressed zero-divisor graphs,” J. Pure Appl. Algebra, vol. 216, pp. 1626-1636, 2012.

L. Susilowati, I. Sa’adah, R. Z. Fauziyyah, and A. Erfanian, ”The dominant metric dimension of graphs,” Heliyon, vol. 6, no. 3, 2020.

E. J. Cockayne, ”Domination of undirected graphs-a survey,” in Theory and Applications of Graphs: Proceedings, Michigan May 11-15, 1976, Springer, Berlin, Heidelberg, pp. 141-147, 1978.

S. Pirzada and R. Raja, ”On the metric dimension of a zero-divisor graph,” Commun. Algebra, vol. 45, no. 4, pp. 1399-1408, 2017.

H. M. A. Siddiqui, A. Mujahid, M. A. Binyamin, and M. F. Nadeem, ”On certain bounds for edge metric dimension of zero-divisor graphs associated with rings,” Math. Probl. Eng., vol. 2021, pp. 1-7, 2021.

N. J. Rad, S. H. Jafari, and D. A. Mojdeh, ”On domination in zero-divisor graphs,” Canad. Math. Bull., vol. 56, no. 2, pp. 407-411, 2013.

G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann, ”Resolvability in graphs and the metric dimension of a graph,” Discrete Appl. Math., vol. 105, no. 1-3, pp. 99-113, 2000.

T. Haynes, Domination in Graphs: Volume 2: Advanced Topics. Routledge, 2017.

Publicado
2025-09-22
Seção
Artigos