An Efficient Numerical Approach for Fractional Heat Equations with Nonlocal Memory Terms

  • Sami Baroudi
  • Ali El Mfadel Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Morocco.
  • Abderrazak Kassidi Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Morocco.
  • M’hamed Elomari Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Morocco.

Résumé

This paper presents a numerical method for solving partial integro-differential equations with weakly singular kernels, using a tempered φ-Caputo fractional derivative of order α ∈ (0, 1). We apply a second-order time discretization and use a tempered fractional integral operator along with piecewise linear interpolation to handle the singularity in the kernel. The stability of the method is analyzed using Von Neumann stability analysis. Finally, numerical examples are provided to demonstrate the effectiveness of the approach.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2025-09-30
Rubrique
Research Articles