Studying the first non-vanishing cohomology group of the Orlik-Solomon algebra for triangle-free graph related graphic arrangements
Resumen
In this work, we examine the vanishing of the second cohomology group of the Orlik- Solomon algebra , denoted by , corresponding to the graphic arrangement related with a triangle-free graph . Here, specifies the number of edges in and is defined as , for . Motivated by this goal, we investigate as a free module and show that it does not vanish when contains chordless 4-cycles including the edges and .
Descargas
Citas
A. G. Fadhil and A. Hana’M, ”On the hypersolvable graphic arrangements,” A M. Sc. thesis submitted to College of Science/University of Basrah (2012).
E. Fadell and L. Neuwirth, ”CONFIGURATION SPACES,” Mathematica Scandinavica J., pp. 111-118, 1962, Accessed: Jan. 03, (2025). [Online]. Available: https://www.jstor.org/stable/24489273
R. Fox, L. N.-M. Scandinavica, and undefined 1962, ”The braid groups,” JSTORR Fox, L NeuwirthMathematica Scandinavica, 1962•JSTOR, Accessed: Jan. 03, (2025). [Online]. Available: https://www.jstor.org/stable/24489274
Y. Kawahara, ”The non-vanishing cohomology of orlik-solomon algebras,” Tokyo Journal of Mathematics, vol. 30, no. 1, (2007), pp. 223-238, doi: 10.3836/TJM/1184963658.
P. Orlik and H. Terao, Arrangements of hyperplanes, vol. 300. Springer Science & Business Media, (2013).
P. Orlik and L. Solomon, ”Combinatories and Topology of Complements of Hyperplanes,” Inventiones math, vol. 56, (1980), pp. 167-189, .
P. Orlik and H. Terao, ”Arrangements of Hyperplanes,” vol. 300, (1992), doi: 10.1007/978-3-662-02772-1.
S. Papadima and A. I. Suciu, ”Higher Homotopy Groups of Complements of Complex Hyperplane Arrangements,” Adv Math (N Y), vol. 165, no. 1, (2002), pp. 71-100, Jan. doi: 10.1006/AIMA.2001.2023.
S. Papadima and A. I. Suciu, ”Higher Homotopy Groups of Complements of Complex Hyperplane Arrangements,” Adv Math (N Y), vol. 165, no. 1, (2002) pp. 71-100, Jan. doi: 10.1006/AIMA.2001.2023.
K. J. Pearson, ”Cohomology of Orlik-Solomon algebras for quadratic arrangements.,” Lect. Mat., vol. 22, no. 2, (2001), pp. 103-134.
R. P. Stanley, ”Supersolvable lattices,” Algebra Universalis, vol. 2, no. 1, (1972) pp. 197-217, Dec. doi: https://doi.org/10.1007/BF02945028.
S. Yuzvinsky, ”Cohomology of the Brieskorn-Orlik-Solomon algebras,” 2006.
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



