(q −h)-Hermite-Hadamard, Midpoint, and Trapezoidal Inequalities for Convex Functions

Resumo

This paper establishes transformative advances in quantum calculus by introducing a comprehensive framework for (q − h)-generalized integral inequalities. We pioneer three foundational contributions to the field: First, we derive a novel bilateral (q − h)-Hermite-Hadamard inequality through an innovative synthesis of left and right quantum integrals, substantially generalizing classical integral inequalities. Second, we develop sharp midpoint-type inequalities with explicit error bounds for (q − h)-differentiable convex functions, employing strategic applications of Holder’s inequality and power mean inequalities to quantify approximation accuracy. Third, we construct advanced trapezoidal estimators incorporating
quantum-calculus modifications that systematically account for parameterized displacements h. Through rigorous constructive proofs and numerical validation, we demonstrate that our unified framework naturally contains classical calculus as the limiting case lim q→1,h→0 achieves tighter error bounds compared to existing q-calculus results through optimized (q,h)-coupling and enables precision-tunable approximations via flexible parameterization of q and h. These breakthroughs significantly extend the operational calculus for convex functions in non-Newtonian analysis, with immediate applications in quantum probability measures, fractional variational optimization, and deformed mathematical physics models requiring
non-uniform discretization schemes. 

Downloads

Não há dados estatísticos.

Biografia do Autor

Iram Javed, Beihang University of Aeronautics and Astronautics

School of Mathematical Sciences

Arslan Razaq, China University of Geosciences

School of Mathematics and Physics

Referências

[1] Butt, S. I., Javed, I., Agarwal, P., & Nieto, J. J. (2023). Newton–Simpson-type inequalities via majorization. Journal of Inequalities and Applications, 2023(1), 16.
[2] Butt, S. I., Rashid, S., Javed, I., Khan, K. A., & Mabela, R. M. (2022). New Fractional Estimates of Simpson-Mercer Type for Twice Differentiable Mappings Pertaining to Mittag-Leffler Kernel. Journal of Function Spaces, 2022(1), 4842344.
[3] Kac, V., & Cheung, P. (2002). Quantum Calculus. Springer: New York, NY, USA.
[4] Jackson, F. H. (1910). On q-difference integrals. QJ Pure Appl. Math, 41, 193-203.
[5] Al-Salam, W. A. (1966). Some fractional q-integrals and q-derivatives. Proceedings of the Edinburgh Mathematical Society, 15(2), 135-140.
[6] Bermudo, S., Korus, P. and Nápoles Valdés, J.E., 2020. On q-Hermite Hadamard inequalities for general convex functions. Acta Mathematica Hungarica, 162, pp.364-374.
[7] Asawasamrit, S., Sudprasert, C., Ntouyas, S.K. and Tariboon, J., 2019. Some results on quantum Hahn integral inequalities. Journal of Inequalities and Applications, 2019, pp.118.
[8] Noor, M.A., Awan, M.U. and Noor, K.I., 2016. Quantum Ostrowski inequalities for q-differentiable convex functions. J. Math. Inequal, 10(4), pp.1013-1018.
[9] Yang, W., 2017. Some new Fej´er type inequalities via quantum calculus on finite intervals. Science Asia, 43(2), pp.123-134.
[10] Budak, H., Ali, M.A. and Tarhanaci, M., 2020. Some new quantum Hermite Hadamard-like inequalities for coordinated convex functions. Journal of Optimization Theory and Applications, 186, pp.899-910.
[11] Ernst, T., 2012. A comprehensive treatment of q-calculus. Springer Science and Business Media.
[12] Ernst, T., 2003. A method for q-calculus. Journal of Nonlinear Mathematical Physics, 10(4), pp.487-525.
[13] J. E. Nápoles Valdés, F. Rabossi, A. D. Samaniego, Convex functions: Ariadne’s thread or Charlotte’s spiderweb?, Advanced Mathematical Models & Applications Vol.5, No.2, 2020, pp.176-191.
[14] Roberts, A.W. and Varberg, D.E., 1973. Convex Functions: Convex Functions. Academic Press.
[15] Dragomir, S.S. and Pearce, C., 2003. Selected topics on Hermite Hadamard inequalities and applications. Science Direct Working Paper, (S1574-0358), p. 04.
[16] Yang, W.H., 2008. A generalization of Hadamard’s inequality for convex functions. Applied Mathematics Letters, 21(3), pp.254-257.
[17] Moslehian, M.S., 2012. Matrix Hermite Hadamard type inequalities. arXiv preprint arXiv:1203.5300.
[18] Latif, M.A., Dragomir, S.S. and Momoniat, E., 2017. Some q-analogues of Hermite Hadamard inequality of functions of two variables on finite rectangles in the plane. Journal of King Saud University-Science, 29(3), pp.263-273.
[19] de la Cal, J. and C. Ajrcamo, J., 2006. Multidimensional Hermite Hadamard inequalities and the convex order. Journal of Mathematical Analysis and Applications, 324(1), pp.248-261.
[20] Jorge A. Castillo Medina, Salvador Cruz Garc´ ıa, Juan E. Nápoles Valdes, Thelma Galeana Moyaho, Some New Results in the q-Calculus, Discontinuity, Nonlinearity, and Complexity 10(4) (2021) 755–763 DOI:10.5890/DNC.2021.12.014
[21] Péter Kórus and Juan E. Nápoles Valdés, q-Hermite–Hadamard inequalities for functions with convex or h-convex q-derivative, Mathematical Inequalities & Applications, Volume 25, Number 2 (2022), 601-610 doi:10.7153/mia-2022-25-36
[22] Mitrinovic, D.S., Pecaric, J. and Fink, A.M., 2013. Classical and new inequalities in analysis (Vol. 61). Springer Science and Business Media.
[23] Alp, N., Sarikaya, M.Z., Kunt, M. and Iscan, I., 2018. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. Journal of King Saud University-Science, 30(2), pp.193-203.
[24] Farid, G. and Afzal, Z., 2022. Further on quantum-plank derivatives and integrals in composite forms. Open J. Math. Anal, 6, pp.130-138.
[25] Tariboon, J. and Ntouyas, S.K., 2014. Quantum integral inequalities on finite intervals. Journal of Inequalities and Applications, 2014, pp.1-13.
[26] Liu, Y., Farid, G., Abuzaid, D. and Nonlaopon, K., 2022. On q-Hermite Hadamard Inequalities via (q −h)-integrals. Symmetry, 14(12), p.2648.
[27] Tariboon, J. and Ntouyas, S.K., 2013. Quantum calculus on finite intervals and applications to impulsive difference equations. Advances in Difference Equations, 2013, pp.1-19.
[28] Sial, I.B., Mei, S., Ali, M.A. and Nonlaopon, K., 2021. On some generalized Simpson’s and Newton’s inequalities for (α,m)-convex functions in q-calculus. Mathematics, 9(24), p.3266.
[29] Soontharanon, J., Ali, M.A., Budak, H., Nonlaopon, K. and Abdullah, Z., 2022. Simpson’s and Newton’s Type Inequalities for (α,m)-convex functions via Quantum Calculus. Symmetry, 14(4), p.736.
[30] Ali, M.A., Budak, H., Feˇckan, M. and Khan, S., 2023. A new version of q-Hermite Hadamard’s midpoint and trapezoid type inequalities for convex functions. Mathematica Slovaca, 73(2), pp.369-386.
[31] Sarikaya, M.Z. and Yildirim, H., 2016. On Hermite Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Mathematical Notes, 17(2), pp.1049-1059.
[32] Kirmaci, U.S., 2004. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Applied Mathematics and Computation, 147(1), pp.137-146.
[33] Dragomir, S.S. and Agarwal, R., 1998. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Applied Mathematics Letters, 11(5), pp.91-95.
Publicado
2025-09-30
Seção
Artigos