Vertex Energy of Small Integral Graphs

Vertex Energy of Small Integral Graphs

  • Shrikanth C. K Tumkur University
  • Sharath Kumar H. T. Tumkur University
  • Narahari N Tumkur University
  • Nagesh H M PES University
  • U Vijaya Chandra Kumar

Resumen

The energy of a graph, introduced in 1970's, is a well studied spectrum based graph invariant that has a notable number of applications in different fields of science. Recently, Arizmendi  et al. have reworked on this idea by introducing the concept of vertex energy of a graph which reflects upon the way the total energy is distributed among the individual vertices. Further, they have explained a method of computing the energy of a vertex $v$ by means of solving a system of linear equations involving the number of $v-v$ walks of different lengths from $v$. In the present study, we compute the vertex energies for all non-trivial connected integral graphs of order up to seven using this method.

Descargas

La descarga de datos todavía no está disponible.

Citas

\bibitem{ariz18} O. Arizmendi, J. F. Hidalgo, O. Juarez-Romero, Energy of a vertex, {\it Linear Algebra Appl.} {\bf 557} (2018) 464-495.
\bibitem{bali02} K. Bali$\grave{n}$ska, D. Cvetkovi$\acute{c}$, Z. Radosavljevi$\acute{c}$, S. Simi$\acute{c}$, D. Stevanovi$\acute{c}$, A survey on integral graphs, {\it Publikacije Elektrotehni$\breve{c}$kog fakulteta. Serija Matematika} {\bf 13} (2002) 42-65.
\bibitem{brou12} A. E. Brouwer, W. H. Haemers, Spectra of Graphs, {\it Springer New York}, New York, 2012.
\bibitem{brou08} A. E. Brouwer, Small integral trees,{\it The Electron. J. Comb. } {\bf 15} (2008), \#N1.
\bibitem{gutm78} I. Gutman, The energy of a graph, {\it Ber. Math. Statist. Sekt. Forschungszentrum Graz.} {\bf 103} (1978) 1–22.
\bibitem{gutm25} I. Gutman, B. Furtula, Calculating Vertex Energies of Graphs - A Tutorial, {\it MATCH Commun. Math. Comput. Chem.} {\bf 93(3)} (2025) 691-698.
\bibitem{hara74} F. Harary, A. J. Schwenk, Which graphs have integral spectra?, in: R. Bari and F. Harary (Eds.), {\it Graphs and Combinatorics}, Springer-Verlag, Berlin, 1974, pp. 45-51.
\bibitem{indu07} G. Indulal, A. Vijaykumar, Some new integral graphs, {\it Applicable Analysis and Discrete Mathematics} {\bf 1} (2007) 420–426.
\bibitem{rama25} H. S. Ramane, S. Y. Chowri, T. Shivaprasad, I. Gutman, Energy of Vertices of Subdivision Graphs, {\it MATCH Commun. Math. Comput. Chem.} {\bf 93(3)} (2025) 701-711.
\bibitem{nara25} H. T. Sharathkumar, C. K. Shrikanth, N. Narahari, H. M. Nagesh, U. Vijay Chandra Kumar, On the vertex energy of small integral trees, {\it MATCH Commun. Math. Comput. Chem.} (\emph{(in press)}.
\bibitem{sloa} N. J. A. Sloane, Sequences 064731 A and A077027 in "The On-Line Encyclopedia of Integer Sequences.", https://oeis.org/A064731
\bibitem{wang05} L. Wang, A survey of results on integral trees and integral graphs, University of Twente, The Netherlands, 2005.
\bibitem{web} E. W. Weisstein, "Integral Graph." From MathWorld--A Wolfram Web Resource, https://mathworld.wolfram.com/IntegralGraph.html
Publicado
2025-09-18
Sección
Research Articles