Amplified eccentric connectivity energy of a graph
Résumé
In this paper, we introduce and formalize the concept of amplified eccentric–connectivity energy (AECE), a novel spectral graph invariant that combines both local and global structural properties through a degree–eccentricity weighted adjacency matrix, termed the amplified eccentric–connectivity matrix. We investigate the spectral properties of this matrix and exact analytical expressions for AECE are derived for key graph classes.
Téléchargements
Références
Aphale, R. K. and Pathan, S. H., On Sombor Energy of Graphs with Self-Loops, Commun. Appl. Nonlinear Anal., 32, 18–30, (2025).
Deidda, P., Segala, N. and Putti, M., Graph p-Laplacian Eigenpairs as Saddle Points of a Family of Spectral Energy Functions, arXiv preprint arXiv:2405.07056, (2024).
Gutman, I., Furtula, B. and Bozkurt, S. B., On Randic Energy, Linear Algebra Appl., 442, 50–57, (2014).
Gutman, I., The Energy of a Graph, Ber. Math. Stat. Sekt. Forschungsz. Graz., 103, 1–22, (1978).
Gutman, I., The Energy of a Graph: Old and New Results, in: Combinatorics and Applications, Betten, A., Khoner, A., Laue, R., Wassermann, A. (eds.), Springer, Berlin, pp. 196–211, (2001).
Huang, Y. F. and Liu, H. C., Bounds of Modified Sombor Index, Spectral Radius and Energy, AIMS Math., 6(10), 11263–11274, (2021).
Kalaam, A. R. A., Greeni, A. B. and Arockiaraj, M., Modified Reverse Degree Descriptors for Combined Topological and Entropy Characterizations of 2D Metal Organic Frameworks: Applications in Graph Energy Prediction, Front. Chem., 12:1470231, (2024). DOI: 10.3389/fchem.2024.1470231
Mathad, V., Sujatha, H. N. and Puneeth, S., Amplified Eccentric Connectivity Index of Graphs, TWMS J. Appl. Eng. Math., 12(4), 1469–1479, (2022).
Nagalakshmi, A. R., Shrikanth, A. S., Kalavathi, G. K. and Sreekeshava, K. S., The Degree Energy of a Graph, Mathematics, 12(17), Article 2699, (2024).
Nikiforov, V., Graphs and Matrices with Maximal Energy, J. Math. Anal. Appl., 327(1), 735–738, (2007).
Puneeth, S., Mathad, V., Shalini, K. and Mahde, S., Application of Eccentricity-Based Topological Indices to the Design and Optimization of Blood Cancer Drugs, J. Chem., Article ID 2414974, (2024). DOI: 10.1155/joch/2414974.
Rather, B. A., Ganie, H. A., Das, K. C. and Shang, Y., The General Extended Adjacency Eigenvalues of Chain Graphs, Mathematics, 12(2), Article 192, (2024). DOI: 10.3390/math12020192
Redzepovic, I. and Furtula, B., Predictive Potential of Eigenvalue-Based Topological Molecular Descriptors, J. Comput. Aided Mol. Des., 34, 975–982, (2020).
Sarveshkumar, B. and Chaluvaraju, B., Sharp Inequalities for the Generalized Steiner-Gutman Index, J. Indian Acad. Phys. Sci., 10.61294/jiaps2025.2911, (2025).
Sharma, V., Goswami, R. and Madan, A. K., Connectivity Index: A Novel Highly Discriminating Topological Descriptor for Structure–Eccentric Property and Structure–Activity Studies, J. Chem. Inf. Comput. Sci., 37, 273–282, (1997).
Tang, Q. and Liu, Y., On the r-th Power Energy of Connected Graphs, arXiv preprint arXiv:2410.16604, (2024).
Tratnik, N., Radenkovic, S., Redzepovic, I., Finsgar, M. and Pletersek, P. Z., Predicting Corrosion Inhibition Effectiveness by Molecular Descriptors of Weighted Chemical Graphs, Croat. Chem. Acta., 94(3), 177–184, (2021).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



