Impact of socio-economic drivers on environmental complexity through chaotic synchronization

  • Ayub Khan Basic Sciences Research centre, Imam Mohammad Bin Saud Islamic University, Kingdom of Saudi Arabia.
  • Pardeep kumar Department of Mathematics , Indraprastha College For Women, University of Delhi, India https://orcid.org/0000-0002-9416-1723
  • Tripti Anand Shyama Prasad Mukherji College for Women, University of Delhi
  • Ajeet Singh Department of Mathematics , Hansraj College , University of Delhi, India
  • Dhanpal Singh https://orcid.org/0000-0003-4793-8250

Résumé

In the field of environmental research, investigating the complexity of interactions between environmental systems and socio-economic drivers, such as financial market fluctuations, requires a variety of sophisticated scientific methodologies. This study aimed to examine the synchronization and anti-synchronization phenomena between two distinct dissipative systems using an active control method, which will offer a prospect in modelling complex environmental interactions. The first chaotic system, introduced by Huang and Li (1993), and the second system, proposed by P. Kumar and S. Jha (2022), are analyzed in depth. By employing phase portraits and Poincaré sections across a range of parameters and initial conditions, we confirm the chaotic nature of both systems. Subsequently, a set of active control laws is designed and implemented to control the intended dynamical phenomena. To validate the theoretical results, comprehensive numerical simulations are conducted, which highlight the effectiveness of the proposed control scheme. This research highlights the relevance of coordination strategies of dissipative systems and managing the complexity inherent in environmental systems influenced by socio-economic dynamics.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Li, J. C., Leng, N., Zhong, G. Y., Wei, Y., & Peng, J. S. Safe marginal time of crude oil price via escape problem of econophysics. Chaos, Solitons & Fractals, 133, 109660. (2020)

Ding, W., Wang, B., Xing, Y., & Li, J. C. Correlation noise and delay time enhanced stability of electricity futures market. Modern Physics Letters B, 33(30), 1950375. (2019)

Zhong, G. Y., Li, J. C., Jiang, G. J., Li, H. F., & Tao, H. M. The time delay restraining the herd behavior with Bayesian approach. Physica A: Statistical Mechanics and its Applications, 507, 335–346. (2018)

Zhou, W., Zhong, G. Y., Leng, N., Li, J. C., & Xiong, D. P. Dynamic behaviors and measurements of financial market crash rate. Physica A: Statistical Mechanics and its Applications, 527, 121427. (2019)

Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N. J., Chung, S., & Gerstein, M. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science, 302(5644), 449–453. (2003)

Muskulus, M., & Verduyn-Lunel, S. Wasserstein distances in the analysis of time series and dynamical systems. Physica D: Nonlinear Phenomena, 240(1), 45–58. (2011)

Miranian, A., & Abdollahzade, M. Developing a local least-squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction. IEEE Transactions on Neural Networks and Learning Systems, 24(2), 207–218. (2012)

Shen, M., Chen, W. N., Zhang, J., Chung, H. S. H., & Kaynak, O. Optimal selection of parameters for nonuniform embedding of chaotic time series using ant colony optimization. IEEE Transactions on Cybernetics, 43(2), 790–802. (2013)

Lai, D., & Chen, G. Dynamical systems identification from time-series data: a Hankel matrix approach. Mathematical and Computer Modelling, 24(3), 1–10. (1996)

Lu, J., Lu, J., Xie, J., & Chen, G. Reconstruction of the Lorenz and Chen systems with noisy observations. Computers & Mathematics with Applications, 46(8–9), 1427–1434. (2003)

Yu, W., Chen, G., Cao, J., Lu, J., & Parlitz, U. Parameter identification of dynamical systems from time series. Physical Review E, 75(6), 067201. (2007)

Liu, J., Shi, S. T., & Zhao, J. C. Comparison study of typical algorithms for reconstructing time series from the recurrence plot of dynamical systems. Chinese Physics B, 22(1), 010505. (2013)

Huang, D., & Li, H. Theory and Method of the Nonlinear Economics. Sichuan University Press, Chengdu. (1993)

Lorenz, E. N. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2), 130–141. (1963)

Gonchenko, S. V., Meiss, J. D., & Ovsyannikov, I. I. I. Chaotic dynamics of three-dimensional H´enon maps that originate from a homoclinic bifurcation. Regular and Chaotic Dynamics, 11(2), 191–212. (2006)

Matsumoto, T. A chaotic attractor from Chua’s circuit. IEEE Transactions on Circuits and Systems, 31(12), 1055–1058. (1984)

Chen, G., & Ueta, T. Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9(07), 1465–1466. (1999)

Lu, J., Chen, G., Cheng, D., & Celikovsky, S. Bridge the gap between the Lorenz system and the Chen system. International Journal of Bifurcation and Chaos, 12(12), 2917–2926. (2002)

Tahir, F. R., Ali, R. S., Pham, V. T., Buscarino, A., Frasca, M., & Fortuna, L. A novel 4D autonomous 2n n-butterfly wing chaotic attractor. Nonlinear Dynamics, 85, 2665–2671. (2016)

Hugenii, C. Horololoquium Oscilatorium sive De motu pendulorum ad horologia aptato demonstratione geomectricae (Hadriani Valli Daphnis, ecloga). Apud F. Muguet, Parisiis. (1673)

Blekman, I. I. Synchronization in Science and Technology. ASME Press, New York. (1988)

Fujisaka, H., & Yamada, T. Stability theory of synchronized motion. Prog. Theor. Phys., 69, 32–47. (1983)

Cavicchioli, R., Ripple, W. J., Timmis, K., Azam, F., Bakken, L. R., Baylis, M., Behrenfeid, M. J., Boetis, A., Boyd, P. W., Classen, A. T., Crowther, T. W., Danovaro, R., Foreman, C. M., Huisman, J., Hutchins, D. A., Jansson, J. K., Karl, D. M., Koskella, B., Welch, D. B. M., Martiny, J. B. H., Moran, M. A., Orphan, V. J., Reay, D. S., Remais, J. V., Rich, V. I., Singh, B. K., Stein, L. Y., Stewart, F. J., Sullivan, M. B., Oppen, M. J. H., Weaver, S. C., Webb, E. A., & Webster, N. S. Scientists’ warning to humanity: Microorganisms and climate change. Nature Reviews Microbiology, 17, 569–586. (2019)

Kumar, P., Jha, S., Aggarwal, R., & Jha, G. K. Effect of climate change on brain tumor. Applications and Applied Mathematics: An International Journal (AAM), 17(2), 17. (2022) Impact of Socio-Economic Drivers... 13 25. Bai, E. W., & Lonngren, K. E. Sychronization of two Lorenz systems using active control. Chaos, Solitons and Fractals, 8, 51–58. (1997)

Ma, J. H., & Chen, Y. S. Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I). Applied Mathematics and Mechanics, 22, 1240–1251. (2001)

Otto, S. P., & Day, T. A biologist’s guide to mathematical modeling in ecology and evolution. Princeton University Press, Princeton, New Jersey. (2007)

Publiée
2025-10-03
Rubrique
Mathematics and Computing - Innovations and Applications (ICMSC-2025)