Existence Results for Generalized Caputo Proportional-Type Fractional Langevin Equations with p-Laplacian operator via Measure of Noncompactness
Résumé
This study addresses the existence of solutions for a novel class of generalized Caputo proportional-type fractional differential Langevin equations involving the p-Laplacian operator. The analysis is conducted by integrating the theory of the p-Laplacian operator with essential concepts from fractional calculus. Using the Kuratowski measure of noncompactness in an arbitrary Banach space and applying Mönch's fixed point theorem within the framework of the measure of noncompactness approach, we establish existence results. To illustrate the applicability and effectiveness of the proposed method, a detailed example is presented.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2025-10-30
Numéro
Rubrique
Research Articles
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



