Efficient Data Preprocessing for Extractive Question Answering Models

  • Sivakumar S
  • Meenakshi S P

Résumé

abstract: Thisstudypresentsasystematicapproachtobuildingadomain-specificquestion-answering(QA)
dataset fromIndianLokSabhaparliamentaryproceedings,withaprimaryfocusonmeticulousdataprepro
cessing.Parliamentarytranscriptsareoftenlengthy,noisy,andunstructured,posingsignificantchallengesfor
downstreamnatural languageprocessing(NLP)tasks.Toaddressthis,wedesignedacomprehensiveprepro
cessingpipelineinvolvingcleaning,segmentation,annotation,normalization,andtokenizationtoconvertraw
transcriptsintostructured,high-qualityQA-readydata.Eachstepwastailoredtothelinguisticandstructural
characteristicsofparliamentarytext. Experimentalevaluationthroughanablationstudydemonstratedthat
ourpreprocessingpipeline ledtoasignificantperformance improvementof9.4%inExactMatch(EM)and
8.5%inF1scorewhenusedtotrainaBERT-basedQAmodel.Additionally,weconductedbiasanalysisand
comparedourdataset’sperformancewithstandardbenchmarks tovalidate itsqualityandrelevance. This
workunderscoresthatrobustpreprocessingisfoundationaltocreatingreliable,domain-adaptedQAdatasets
forextractivemodels

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Meenakshi S P

School of Computer Science and Engineering,

Assistant Professor Sr

Publiée
2025-11-01
Rubrique
Special Issue on “Applied Mathematics and Computing”(ICAMC-25)