Generalized sinc-squared integrals: theoretical problems and examples

  • Sadoun Ahmed Badji Mokhtar-Annaba university
  • halim zeghdoudi LaPS laboratory, Badji-Mokhtar University, Box 12, Annaba, 23000,ALGERIA

Résumé

\begin{abstract} We revisit the classical sinc-squared integral

\[
I(a) = \int_{0}^{\infty} \left(\frac{\sin(ax)}{x}\right)^{2} dx,
\]
whose well-known evaluation $I(a) = \tfrac{\pi a}{2}$ is a cornerstone of Fourier analysis.
Building on this foundation, we present a unified study of its generalizations and structural properties.
Our main contributions are: (i) exact formulas and asymptotic expansions for higher-power integrals
\(
I_{n}(a) = \int_{0}^{\infty} \big(\tfrac{\sin(ax)}{x}\big)^{n} dx
\),
including precise decay laws as $n \to \infty$;
(ii) weighted variants
\(
K_{\alpha}(a) = \int_{0}^{\infty} \big(\tfrac{\sin(ax)}{x}\big)^{2} x^{\alpha} dx
\)
with closed forms and asymptotics near critical indices; (iii) exponentially damped integrals $I_{n,\lambda}(a)$, providing a regularization framework with exact evaluations, limiting behavior, and convergence rates; and (iv) perspectives on multidimensional analogues, analytic continuation, and discrete series counterparts, which we formulate as open problems. Beyond the theoretical analysis, we demonstrate applications in signal processing, optics, quantum mechanics, and probability theory, showing how these integrals encode energy principles, diffraction patterns, wave-packet normalization, and uncertainty relations. The paper thus offers a unifying perspective on sinc-type integrals, combining rigorous analysis, explicit formulas, and practical interpretations, while identifying new directions for future research. \end{abstract}

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Y. L. Luke, The Special Functions and Their Approximations, Academic Press, 1969.

F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.

M. Bronstein, Symbolic Integration I: Transcendental Functions, Springer, 2005.

G. H. Hardy, Divergent Series, Oxford University Press, 1949.

NIST Digital Library of Mathematical Functions, https://dlmf.nist.gov.

P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkh¨auser, 1992.

J. R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations, Oxford University Press, 1996.

M. Unser, “Sampling—50 Years after Shannon,” Proceedings of the IEEE, vol. 88, no. 4, pp. 569–587, 2000.

M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge University Press, 1999.

A. Messiah, Quantum Mechanics, Vol. I. Amsterdam: North-Holland Publishing Company, 1966.

Publiée
2025-11-01
Rubrique
Advances in Nonlinear Analysis and Applications